Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-12T18:52:31.892Z Has data issue: false hasContentIssue false

Self-assembled materials for electrochemical energy storage

Published online by Cambridge University Press:  09 October 2020

Hao Chen
Affiliation:
Stanford University, USA; haochen9@stanford.edu
Peter Benedek
Affiliation:
ETH Zürich, Switzerland; benedekp@ethz.ch
Khande-Jaé Fisher
Affiliation:
Stanford University, USA; kjfisher@stanford.edu
Vanessa Wood
Affiliation:
ETH Zürich, Switzerland; vwood@ethz.ch
Yi Cui
Affiliation:
Department of Materials Science and Engineering, Stanford University, USA; yicui@stanford.edu
Get access

Abstract

Electrochemical energy-storage systems such as supercapacitors and lithium-ion batteries require complex intertwined networks that provide fast transport pathways for ions and electrons without interfering with their energy density. Self-assembly of nanomaterials into hierarchical structures offers exciting possibilities to create such pathways. This article summarizes recent research achievements in self-assembled zero-dimensional, one-dimensional, and two-dimensional nanomaterials, ordered pore structure materials, and the interfaces between these. We analyze how self-assembly strategies can create storage architectures that improve device performance toward higher energy densities, longevity, rate capability, and device safety. At the end, the remaining challenges of scalable low-cost manufacturing and future opportunities such as self-healing are discussed.

Type
Functional Materials and Devices by Self-Assembly
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chu, S., Cui, Y., Liu, N., Nat. Mater. 16, 16 (2017).CrossRefGoogle Scholar
Yang, Z., Zhang, J., Kintner-Meyer, M.C.W., Lu, X., Choi, D., Lemmon, J.P., Liu, J., Chem. Rev. 111, 3577 (2011).CrossRefGoogle Scholar
Armand, M., Tarascon, J.M., Nature 451, 652 (2008).CrossRefGoogle Scholar
Choi, N.-S., Chen, Z., Freunberger, S.A., Ji, X., Sun, Y.-K., Amine, K., Yushin, G., Nazar, L.F., Cho, J., Bruce, P.G., Angew. Chem. Int. Ed. 51, 9994 (2012).Google Scholar
Müller, S., Lippuner, M., Verezhak, M., De Andrade, V., De Carlo, F., Wood, V., Adv. Energy Mater. 10, 1904119 (2020).10.1002/aenm.201904119CrossRefGoogle Scholar
Wang, G.X., Yao, J., Liu, H.K., Electrochem. Solid-State Lett. 7, A250 (2004).CrossRefGoogle Scholar
Lagadec, M.F., Zahn, R., Wood, V., Nat. Energy 4, 16 (2019).Google Scholar
Xu, K., Chem. Rev. 114, 11503 (2014).CrossRefGoogle Scholar
Pomerantseva, E., Bonaccorso, F., Feng, X., Cui, Y., Gogotsi, Y., Science 366, eaan8285 (2019).CrossRefGoogle Scholar
Wang, J., Cui, Y., Wang, D., Adv. Mater. 31, 1801993 (2019).CrossRefGoogle Scholar
Liu, N., Lu, Z., Zhao, J., McDowell, M.T., Lee, H.-W., Zhao, W., Cui, Y., Nat. Nanotechnol. 9, 187 (2014).CrossRefGoogle Scholar
Li, W., Liang, Z., Lu, Z., Yao, H., Seh, Z.W., Yan, K., Zheng, G., Cui, Y., Adv. Energy Mater. 5, 1500211 (2015).10.1002/aenm.201500211CrossRefGoogle Scholar
Zhang, H., Yu, X., Braun, P.V., Nat. Nanotechnol. 6, 277 (2011).CrossRefGoogle Scholar
Boebinger, M.G., Yarema, O., Yarema, M., Unocic, K.A., Unocic, R.R., Wood, V., McDowell, M.T., Nat. Nanotechnol. 15, 475 (2020).CrossRefGoogle Scholar
Chen, C., Fan, Y., Gu, J., Wu, L., Passerini, S., Mai, L., J. Phys. D Appl. Phys. 51, 113002 (2018).CrossRefGoogle Scholar
Chan, C.K., Peng, H., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., Cui, Y., Nat. Nanotechnol. 3, 31 (2008).CrossRefGoogle Scholar
Zhou, G., Xu, L., Hu, G., Mai, L., Cui, Y., Chem. Rev. 119, 11042 (2019).CrossRefGoogle Scholar
Chen, L.-F., Feng, Y., Liang, H.-W., Wu, Z.-Y., Yu, S.-H., Adv. Energy Mater. 7, 1700826 (2017).CrossRefGoogle Scholar
Liu, W., Lee, S.W., Lin, D., Shi, F., Wang, S., Sendek, A.D., Cui, Y., Nat. Energy 2, 17035 (2017).Google Scholar
Wu, H., Chan, G., Choi, J.W., Ryu, I., Yao, Y., McDowell, M.T., Lee, S.W., Jackson, A., Yang, Y., Hu, L., Cui, Y., Nat. Nanotechnol. 7, 310 (2012).CrossRefGoogle Scholar
Yu, Z., Duong, B., Abbitt, D., Thomas, J., Adv. Mater. 25, 3302 (2013).CrossRefGoogle Scholar
Han, D., Zhang, J., Weng, Z., Kong, D., Tao, Y., Ding, F., Ruan, D., Yang, Q.-H., Mater. Today Energy 11, 30 (2019).CrossRefGoogle Scholar
Wang, X., Weng, Q., Yang, Y., Bando, Y., Golberg, D., Chem. Soc. Rev. 45, 4042 (2016).CrossRefGoogle Scholar
Anasori, B., Lukatskaya, M.R., Gogotsi, Y., Nat. Rev. Mater. 2, 16098 (2017).CrossRefGoogle Scholar
Chen, H., Zhou, G., Boyle, D., Wan, J., Wang, H., Lin, D., Mackanic, D., Zhang, Z., Kim, S. C., Lee, H.R., Wang, H., Huang, W., Ye, Y., Cui, Y., Matter 2, 1605 (2020).CrossRefGoogle Scholar
Yao, K.P.C., Okasinski, J.S., Kalaga, K., Shkrob, I.A., Abraham, D.P., Energy Environ. Sci. 12, 656 (2019).CrossRefGoogle Scholar
Liu, Y., Zhu, Y., Cui, Y., Nat. Energy 4, 540 (2019).Google Scholar
Wang, C., Gong, Y., Dai, J., Zhang, L., Xie, H., Pastel, G., Liu, B., Wachsman, E., Wang, H., Hu, L., J. Am. Chem. Soc. 139, 14257 (2017).CrossRefGoogle Scholar
Wood, V., Ebner, M.O.J., “Method for the Production of Electrodes and Electrodes Made Using Such a Method, US Patent 10,374,219 (2019).Google Scholar
Chen, H., Pei, A., Wan, J., Lin, D., Vilá, R., Wang, H., Mackanic, D., Steinrück, H.-G., Huang, W., Li, Y., Yang, A., Xie, J., Wu, Y., Wang, H., Cui, Y., Joule 4, 938 (2020).CrossRefGoogle Scholar
Xia, Y., Mathis, T.S., Zhao, M.-Q., Anasori, B., Dang, A., Zhou, Z., Cho, H., Gogotsi, Y., Yang, S., Nature 557, 409 (2018).CrossRefGoogle Scholar
Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., Hultman, L., Gogotsi, Y., Barsoum, M.W., Adv. Mater. 23, 4248 (2011).CrossRefGoogle Scholar
Chen, Z., Ren, W., Gao, L., Liu, B., Pei, S., Cheng, H.-M., Nat. Mater. 10, 424 (2011).CrossRefGoogle Scholar
Chen, Z., Jin, L., Hao, W., Ren, W., Cheng, H.M., Mater. Today Nano 5, 100027 (2019).CrossRefGoogle Scholar
Bu, F., Zagho, M.M., Ibrahim, Y., Ma, B., Elzatahry, A., Zhao, D., Nano Today 30, 100803 (2020).CrossRefGoogle Scholar
Xie, L.S., Skorupskii, G., Dincă, M.. Chem. Rev. 120, 8536 (2020).CrossRefGoogle Scholar
Li, X., Wang, H., Chen, H., Zheng, Q., Zhang, Q., Mao, H., Liu, Y., Cai, S., Sun, B., Dun, C., Gordon, M.P., Zheng, H., Reimer, J.A., Urban, J.J., Ciston, J., Tan, T., Chan, E.M., Zhang, J., Liu, Y., Chem 6, 933 (2020).CrossRefGoogle Scholar
Xie, X.-C., Huang, K.-J., Wu, X., J. Mater. Chem. A 6, 6754 (2018).CrossRefGoogle Scholar
Wang, J., Li, N., Xu, Y., Pang, H., Chem. Eur. J. 26, 6402 (2020).CrossRefGoogle Scholar
Aubrey, M.L., Long, J.R., J. Am. Chem. Soc. 137, 13594 (2015).CrossRefGoogle Scholar
Feng, D., Lei, T., Lukatskaya, M.R., Park, J., Huang, Z., Lee, M., Shaw, L., Chen, S., Yakovenko, A.A., Kulkarni, A., Xiao, J., Fredrickson, K., Tok, J.B., Zou, X., Cui, Y., Bao, Z., Nat. Energy 3, 30 (2018).CrossRefGoogle Scholar
Bai, S., Liu, X., Zhu, K., Wu, S., Zhou, H., Nat. Energy 1, 16094 (2016).Google Scholar
Herle, P.S., Ellis, B., Coombs, N., Nazar, L.F., Nat. Mater. 3, 147 (2004).CrossRefGoogle Scholar
Wang, D.-W., Zeng, Q., Zhou, G., Yin, L., Li, F., Cheng, H.-M., Gentle, I.R., Lu, G.Q.M., J. Mater. Chem. A 1, 9382 (2013).CrossRefGoogle Scholar
Ryu, W.-H., Jung, J.-W., Park, K., Kim, S.-J., Kim, I.-D., Nanoscale 6, 10975 (2014).CrossRefGoogle Scholar
Tepavcevic, S., Liu, Y., Zhou, D., Lai, B., Maser, J., Zuo, X., Chan, H., Král, P., Johnson, C.S., Stamenkovic, V., Markovic, N.M., Rajh, T., ACS Nano 9, 8194 (2015).CrossRefGoogle Scholar
Luo, S., Xie, L., Han, F., Wei, W., Huang, Y., Zhang, H., Zhu, M., Schmidt, O.G., Wang, L., Adv. Funct. Mater. 29, 1901336 (2019).CrossRefGoogle Scholar
Müller, S., Pietsch, P., Brandt, B.-E., Baade, P., De Andrade, V., De Carlo, F., Wood, V., Nat. Commun. 9, 2340 (2018).CrossRefGoogle Scholar
Wang, X., Li, Y., Meng, Y.S., Joule 2, 2225 (2018).CrossRefGoogle Scholar
Huang, W., Attia, P.M., Wang, H., Renfrew, S.E., Jin, N., Das, S., Zhang, Z., Boyle, D.T., Li, Y., Bazant, M.Z., McCloskey, B.D., Chueh, W.C., Cui, Y., Nano Lett. 19, 5140 (2019).CrossRefGoogle Scholar
Zachman, M.J., Tu, Z., Choudhury, S., Archer, L.A., Kourkoutis, L.F., Nature 560, 345 (2018).CrossRefGoogle Scholar
Li, Y., Li, Y., Pei, A., Yan, K., Sun, Y., Wu, C.-L., Joubert, L.-M., Chin, R., Koh, A.L., Yu, Y., Perrino, J., Butz, B., Chu, S., Cui, Y., Science 358, 506 (2017).CrossRefGoogle Scholar
Wang, C., Meng, Y.S., Xu, K., J. Electrochem. Soc. 166, A5184 (2018).CrossRefGoogle Scholar
Liu, H., Naylor, A.J., Menon, A.S., Brant, W.R., Edström, K., Younesi, R., Adv. Mater. Interfaces 7, 2000277 (2020).CrossRefGoogle Scholar
Lewis, J.A., Tippens, J., Cortes, F.J.Q., McDowell, M.T., Trends Chem. 1, 845 (2019).CrossRefGoogle Scholar
Banerjee, A., Wang, X., Fang, C., Wu, E.A., Meng, Y.S., Chem. Rev. 120, 6878 (2020).CrossRefGoogle Scholar
Lv, F., Wang, Z., Shi, L., Zhu, J., Edström, K., Mindemark, J., Yuan, S., J. Power Sources 441, 227175 (2019).CrossRefGoogle Scholar
Li, Y., Chen, H., Lim, K., Deng, H.D., Lim, J., Fraggedakis, D., Attia, P.M., Lee, S.C., Jin, N., Moškon, J., Guan, Z., Gent, W.E., Hong, J., Yu, Y.-S., Gaberšček, M., Islam, M.S., Bazant, M.Z., Chueh, W.C., Nat. Mater. 17, 915 (2018).CrossRefGoogle Scholar
Zhang, W., Yu, H.-C., Wu, L., Liu, H., Abdellahi, A., Qiu, B., Bai, J., Orvananos, B., Strobridge, F.C., Zhou, X., Liu, Z., Ceder, G., Zhu, Y., Thornton, K., Grey, C.P., Wang, F., Sci. Adv. 4, eaao2608 (2018).CrossRefGoogle Scholar
Benedek, P., Forslund, O.K., Nocerino, E., Yazdani, N., Matsubara, N., Sassa, Y., Jurànyi, F., Medarde, M., Telling, M., Månsson, M., Wood, V., ACS Appl. Mater. Interfaces 12, 16243 (2020).CrossRefGoogle ScholarPubMed
Wood, D.L., Li, J., Daniel, C., J. Power Sources 275, 234 (2015).CrossRefGoogle Scholar
Gert, B., Messagie, M., Smekens, J., Omar, N., Vanhaverbeke, L., Mierlo, J.V., Energies 10, 1314 (2017).CrossRefGoogle Scholar
Kwade, A., Haselrieder, W., Leithoff, R., Modlinger, A., Dietrich, F., Droeder, K., Nat. Energy 3, 290 (2018).Google Scholar
Yan, Y., Zhao, X., Dou, H., Wei, J., Sun, Z., He, Y.-S., Dong, Q., Xu, H., Yang, X., ACS Appl. Mater. Interfaces 12, 18541 (2020).CrossRefGoogle Scholar
Sauter, C., Zahn, R., Wood, V., J. Electrochem. Soc. 167, 100546 (2020).CrossRefGoogle Scholar
Lin, D., Liu, Y., Cui, Y., Nat. Nanotechnol. 12, 194 (2017).CrossRefGoogle Scholar
Chen, D., Wang, D., Yang, Y., Huang, Q., Zhu, S., Zheng, Z., Adv. Energy Mater. 7, 1700890 (2017).CrossRefGoogle Scholar
Chao, W., Wu, H., Chen, Z., McDowell, M.T., Cui, Y., Bao, Z., Nat. Chem. 5, 1042 (2013).Google Scholar