Skip to main content Accessibility help

Predictive modeling and design rules for solid electrolytes

  • Gerbrand Ceder (a1), Shyue Ping Ong (a2) and Yan Wang (a3)


All-solid-state batteries utilizing a ceramic instead of an organic liquid as an electrolyte have the potential to be safer and more energy dense than traditional rechargeable lithium-ion batteries. This emergent energy-storage technology, however, is still critically limited by the performance of the solid electrolyte and its interface with electrodes. Here, we present a review of recent efforts in predictive modeling and materials design for lithium and sodium solid electrolytes using advanced computational approaches. These approaches have enabled the efficient design and discovery of new functional materials with desired properties, such as high alkali ionic conductivity, good phase and electrochemical stability, and low cost, accelerating the development of all-solid-state alkali batteries.



Hide All
1.Miara, L.J., Ong, S.P., Mo, Y., Richards, W.D., Park, Y., Lee, J.-M., Lee, H.S., Ceder, G., Chem. Mater. 25, 3048 (2013).
2.Adams, S., Solid State Ionics 177, 1625 (2006).
3.Deng, Z., Mo, Y., Ong, S.P., NPG Asia Mater . 8, e254 (2016).
4.Wang, Y., Richards, W.D., Ong, S.P., Miara, L.J., Kim, J.C., Mo, Y., Ceder, G., Nat. Mater. 14, 1026 (2015).
5.Miara, L.J., Richards, W.D., Wang, Y.E., Ceder, G., Chem. Mater. 27, 4040 (2015).
6.Zhu, Z., Chu, I.-H., Deng, Z., Ong, S.P., Chem. Mater. 27, 8318 (2015).
7.Chu, I.-H., Kompella, C.S., Nguyen, H., Zhu, Z., Hy, S., Deng, Z., Meng, Y.S., Ong, S.P., Sci. Rep. 6, 33733 (2016).
8.Zhu, Z., Chu, I.-H., Ong, S.P., Chem. Mater. 29, 2474 (2017).
9.Fang, H., Jena, P., Proc. Natl. Acad. Sci. U.S.A. 114, 11046 (2017).
10.Chen, H.M., Maohua, C., Adams, S., Phys. Chem. Chem. Phys. 17, 16494 (2015).
11.Kamaya, N., Homma, K., Yamakawa, Y., Hirayama, M., Kanno, R., Yonemura, M., Kamiyama, T., Kato, Y., Hama, S., Kawamoto, K., Mitsui, A., Nat. Mater. 10, 682 (2011).
12.Ong, S.P., Mo, Y., Richards, W.D., Miara, L., Lee, H.S., Ceder, G., Energy Environ. Sci. 6, 148 (2013).
13.Bron, P., Johansson, S., Zick, K., Schmedt auf der Günne, J., Dehnen, S., Roling, B., J. Am. Chem. Soc. 135, 15694 (2013).
14.Whiteley, J.M., Woo, J.H., Hu, E., Nam, K.-W., Lee, S.-H., J. Electrochem. Soc. 161, A1812 (2014).
15.Kato, Y., Hori, S., Saito, T., Suzuki, K., Hirayama, M., Mitsui, A., Yonemura, M., Iba, H., Kanno, R., Nat. Energy 1, 16030 (2016).
16.Richards, W.D., Tsujimura, T., Miara, L.J., Wang, Y., Kim, J.C., Ong, S.P., Uechi, I., Suzuki, N., Ceder, G., Nat. Commun. 7, 11009 (2016).
17.Zhang, Z., Ramos, E., Lalère, F., Assoud, A., Kaup, K., Hartman, P., Nazar, L.F., Energy Environ. Sci. 11, 87 (2018).
18.Inorganic Crystal Structure Database,
19.Hull, S., Rep. Prog. Phys. 67 1233 (2004).
20.Richards, W.D., Wang, Y., Miara, L.J., Kim, J.C., Ceder, G., Energy Environ. Sci. 9, 3272 (2016).
21.Suzuki, N., Richards, W.D., Wang, Y., Miara, L.J., Kim, J.C., Jung, I.-S., Tsujimura, T., Chem. Mater. 30, 2236 (2018).
22.Kaup, K., Lalère, F., Huq, A., Shyamsunder, A., Adermann, T., Hartmann, P., Nazar, L.F., Chem. Mater. 30, 592 (2018).
23.Chu, I.-H., Nguyen, H., Hy, S., Lin, Y., Wang, Z., Xu, Z., Deng, Z., Meng, Y.S., Ong, S.P., ACS Appl. Mater. Interfaces 8, 7843 (2016).
24.Wang, Y., Richards, W.D., Bo, S., Miara, L.J., Ceder, G., Chem. Mater. 29, 7475 (2017).
25.Mo, Y., Ong, S.P., Ceder, G., Chem. Mater. 24, 15 (2012).
26.Zhu, Y., He, X., Mo, Y., ACS Appl. Mater. Interfaces 7, 23685 (2015).
27.Richards, W.D., Miara, L.J., Wang, Y., Kim, J.C., Ceder, G., Chem. Mater. 28, 266 (2016).
28.Sharafi, A., Kazyak, E., Davis, A.L., Yu, S., Thompson, T., Siegel, D.J., Dasgupta, N.P., Sakamoto, J., Chem. Mater. 29, 7961 (2017).
29.Deng, Z., Wang, Z., Chu, I.-H., Luo, J., Ong, S.P., J. Electrochem. Soc. 163, A67 (2016).
30.Tang, H., Deng, Z., Lin, Z., Wang, Z., Chu, I.H., Chen, C., Zhu, Z., Zheng, C., Ong, S.P., Chem. Mater. 30, 163 (2018).
31.Jain, A., Ong, S.P., Hautier, G., Chen, W., Richards, W.D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., Persson, K.A., APL Mater . 1, 011002 (2013).
32.Tian, Y., Shi, T., Richards, W.D., Li, J., Kim, J.C., Bo, S., Ceder, G., Energy Environ. Sci. 10, 1150 (2017).
33.Miara, L., Windmüller, A., Tsai, C.L., Richards, W.D., Ma, Q., Uhlenbruck, S., Guillon, O., Ceder, G., ACS Appl. Mater. Interfaces 8, 26842 (2016).
34.Wenzel, S., Leichtweiss, T., Weber, D.A., Sann, J., Zeier, W.G., Janek, J., ACS Appl. Mater. Interfaces 8, 28216 (2016).
35.Wenzel, S., Weber, D.A., Leichtweiss, T., Busche, M.R., Sann, J., Janek, J., Solid State Ionics 286, 24 (2016).
36.Seo, D.H., Lee, J., Urban, A., Malik, R., Kang, S., Ceder, G., Nat. Chem. 8, 692 (2016).
37.Al-Qawasmeh, A., Holzwarth, N.A.W., J. Power Sources 364, 410 (2017).
38.Lepley, N.D., Holzwarth, N.A.W., Phys. Rev. B 92, 214201 (2015).



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed