Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-28T08:15:40.906Z Has data issue: false hasContentIssue false

Polytype Replication in Heteroepitaxial Growth of Nonpolar AlN on SiC

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Zinc-blende and wurtzite are the most common structures for binary compound semiconductors. Aluminum nitrides (AIN), one of the most promising materials for deep ultraviolet light-emitting diodes, have a wurtzite structure as an equilibrium phase due to its strong ionicity. Silicon carbide (SiC) is widely used as a substrate for heteroepitaxial growth of AlN, since SiC has a hexagonal structure whose lattice constant is close to that of AIN. Different from other compound semiconductors, SiC can have many different crystalline structures, called polytypism. Among various polytypes of SiC, large-size high-quality wafers are available for 4H and 6H structures. When AlN is grown on a 4H- or 6H-SiC basal plane (0001), normal, wurtzite-structured AIN is obtained. On the other hand, when AlN is grown on a nonbasal SiC plane, such as nonpolar (1100) or (1120), what is expected? If ideal growth is realized, AIN will follow the crystalline structure of SiC (i.e., the polytype of the SiC substrate will be replicated to the AIN epitaxial layer). Nonpolar nitride growth has attracted much attention to eliminate undesirable internal electric fields due to the polarization in nitride heterostructures. In addition, nonpolar nitride growth on SiC also allows an opportunity to obtain nitrides with new crystalline structures. In this article, the polytype replication growth of AIN on nonpolar SiC substrates is reviewed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Khan, M.A., Phys. Status Solidi A 203, 1764 (2006).CrossRefGoogle Scholar
2Taniyasu, Y., Kasu, M., Makimoto, T., Nature 441, 325 (2006).CrossRefGoogle Scholar
3Park, S.-H., J. Appl. Phys. 91, 9904 (2002).CrossRefGoogle Scholar
4Ng, H.M., Bell, A., Ponce, F.A., Chu, S.N.G., Appl. Phys. Lett. 83, 653 (2003).CrossRefGoogle Scholar
5Verma, A.R., Krishna, K., Polymorphism and Polytypism in Crystals (Wiley, New York, 1966).Google Scholar
6Pandey, D., Krishna, P.J., J. Cryst. Growth 31, 66 (1975).CrossRefGoogle Scholar
7Tairov, Y.M., Tsvetkov, V.F., J. Cryst. Growth 43, 209 (1978).CrossRefGoogle Scholar
8Hobgood, H.M., Brady, M.F., Calus, M.R., Jenny, J.R., Leonard, R.T., Malta, D.P., Muller, S.G., Powell, A.R., Tsvetkov, V.F., Glass, R.C., Carter, C.H., Mater. Sci. Forum 457–460, 3 (2003).Google Scholar
9Gardner, N.F., Kim, J.C., Wierer, J.J., Shen, Y.C., Krames, M.R., Appl. Phys. Lett. 86, 111101 (2005).CrossRefGoogle Scholar
10Onojima, N., Suda, J., Kimoto, T., Matsunami, H., Appl. Phys. Lett. 83, 5208 (2003).CrossRefGoogle Scholar
11Stemmer, S., Pirouz, P., Ikuhara, Y., Davis, R.F., Phys. Rev. Lett. 77, 1797 (1996).CrossRefGoogle Scholar
12Onojima, N., Suda, J., Matsunami, H., Jpn. J. Appl. Phys. 41, L1348 (2002).CrossRefGoogle Scholar
13Onojima, N., Suda, J., Matsunami, H., Mater. Res. Soc. Symp. Proc. 743, L3.21 (2003).CrossRefGoogle Scholar
14Craven, M.D., Lim, S.H., Wu, F., Speck, J.S., DenBaars, S.P., Appl. Phys. Lett. 81, 469 (2002).CrossRefGoogle Scholar
15Horita, M., Suda, J., Kimoto, T., Phys. Status Solidi C 3, 1503 (2006).CrossRefGoogle Scholar
16Horita, M., Suda, J., Kimoto, T., Appl. Phys. Lett. 89, 112117 (2006).CrossRefGoogle Scholar
17Horita, M., Kimoto, T., Suda, J., Jpn. J. Appl. Phys. 47 8388 (2008).CrossRefGoogle Scholar
18Armitage, R., Suda, J., Kimoto, T., Appl. Phys. Lett. 88, 011908 (2006).CrossRefGoogle Scholar
19Horita, M., Kimoto, T., Suda, J., Appl. Phys. Lett. 93, 082106 (2008).CrossRefGoogle Scholar
20Suda, J., Horita, M., Armitage, R., Kimoto, T., J. Crys. Growth 301, 410 (2007).CrossRefGoogle Scholar
21Schaadt, D.M., Brandt, O., Trampert, A., Schönherr, H.-P., Ploog, K.H., J. Crys. Growth 300, 127 (2007).CrossRefGoogle Scholar
22Armitage, R., Horita, M., Suda, J., Kimoto, T., Mater. Res. Soc. Symp. Proc. 892, FF28–03 (2006).Google Scholar
23Armitage, R., Horita, M., Suda, J., Kimoto, T., J. Appl. Phys. 101, 033534 (2007).CrossRefGoogle Scholar
24Zetterling, C.-M., Wongchotigul, K., Spencer, M.G., Harris, C.I., Wong, S.S., Östling, M., Mater. Res. Soc. Symp. Proc. 423, 667 (1996).CrossRefGoogle Scholar
25Onojima, N., Kaido, J., Suda, J., Kimoto, T., Phys. Status Solidi C 2, 2643 (2005).CrossRefGoogle Scholar
26Pankove, J., Chang, S.-S., Lee, H.C., Molnar, R., Moustakas, T.D., Van Zeghbroeck, B., in Proceedings of International Electron Devices Meeting, San Francisco, U.S.A. (1994), p. 389.Google Scholar
27Suda, J., Nakano, Y., Shimada, S., Amari, K., Kimoto, T., Mater. Sci. Forum 527–529, 1545 (2006).CrossRefGoogle Scholar