Skip to main content Accessibility help

A perspective on coupled multiscale simulation and validation in nuclear materials

  • M.P. Short (a1), D. Gaston (a2), C.R. Stanek (a3) and S. Yip (a4)


The field of nuclear materials encompasses numerous opportunities to address and ultimately solve longstanding industrial problems by improving the fundamental understanding of materials through the integration of experiments with multiscale modeling and high-performance simulation. A particularly noteworthy example is an ongoing study of axial power distortions in a nuclear reactor induced by corrosion deposits, known as CRUD (Chalk River unidentified deposits). We describe how progress is being made toward achieving scientific advances and technological solutions on two fronts. Specifically, the study of thermal conductivity of CRUD phases has augmented missing data as well as revealed new mechanisms. Additionally, the development of a multiscale simulation framework shows potential for the validation of a new capability to predict the power distribution of a reactor, in effect direct evidence of technological impact. The material- and system-level challenges identified in the study of CRUD are similar to other well-known vexing problems in nuclear materials, such as irradiation accelerated corrosion, stress corrosion cracking, and void swelling; they all involve connecting materials science fundamentals at the atomistic- and meso-scales to technology challenges at the macroscale.



Hide All
1.Roberto, J., De La Rubia, T., “Basic Research Needs for Advanced Nuclear Energy Systems” (US DOE, 2006).
2.Allen, T., Burlet, H., Nanstad, R.K., Samaras, M., Ukai, S., MRS Bull. 34 (1), 20 (2009).
3.Zinkle, S.J., Was, G.S., Acta Mater. 61 (3), 735 (2013).
4.Guerin, Y., Was, G.S., Zinkle, S.J., MRS Bull. 34, 10 (2009).
5.Misra, A., Thilly, L., MRS Bull. 35, 965 (2010).
6.Gaston, D., Newman, C., Hansen, G., Lebrun-Grandié, D., Nucl. Eng. Des. 239 (10), 1768 (2009).
7.Tonks, M., Gaston, D., Millet, P., Andrs, D., Paul, T., Comput. Mater. Sci. 51 (1), 20 (2012).
8.Gaston, D., Permann, C., in International Conference on Mathematics and Computational Methods Applied to Nuclear Science & Engineering (M&C 2013), (Sun Valley, ID, 2013).
9.US Department of Energy; (accessed July 10, 2013).
10.Deshon, J., Hussey, D., Kendrick, B., McGurk, J., Secker, J., Short, M.P., JOM 63 (8), 366 (2012).
11.Short, M.P., Hussey, D., Kendrick, B., Besmann, T., Stanek, C., Yip, S., J. Nucl. Mater. 443 (1–3), 579 (2013).
12.Adamson, R., Garzarolli, F., Cox, B., Strasser, A., ZIRAT Special Topic Report: Corrosion Mechanisms in Zirconium Alloys (ANT International Skultuna, Sweden, 2007).
13.Quantitative Micro-Nano Working Group, (2013).
14.Garner, F.A., Gelles, D.S., in Proceedings of Symposium on Effects of Radiation on Materials: 14th International Symposium; ASTM STP 1046 (Philadelphia, 1990).
15.Garner, F.A., in Comprehensive Nuclear Materials 4, Konings, R.J.M., Ed. (Elsevier, Amsterdam, 2012), pp. 3395.
16.Yip, S., Short, M.P., Nat. Mater. 12, 774777 (2013), doi:10.1038/nmat3746.
17.PWR Axial Offset Anomaly (AOA) Guidelines, Revision 1, EPRI, Palo Alto, CA, 2004 (1008102).
18.Combrade, P., Scott, P., Foucault, M., Andrieu, E., Marcus, P., Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems (Salt Lake City, UT, 2005).
19.Yeon, J.-W., Choi, I.-K., Park, K.-K., Kwon, H.-M., Song, K., J. Nucl. Mater. 404 (2), 160 (2010).
20.Neves, C.F.C., Alvial, G.M., Schvartzman, M.M.A., Alves, L.F.F., Paula, R.G., Energy Mater. 3 (2), 126 (2008).
21.Bindra, H., Jones, B.G., Colloids Surf. A 397, 85 (2012).
22.Wells, D., “EPRI Chemistry and Radiation Management PWR Primary Water Chemistry Guidelines Revision Project Updates—Optimized Fuel Crud and SRMP Revision,” in EPRI P-TAC Summer Meeting (EPRI, Atlanta, GA, 2012).
23.Henshaw, J., McGurk, J., Sims, H.E., Tuson, A., Dickinson, S., Deshon, J., J. Nucl. Mater. 353 (1–2), 1 (2006).
24.Modeling PWR Fuel Corrosion Product Deposition and Growth Process: Final Report, EPRI, Palo Alto, CA, 2005 (1011743).
25.Cohen, P., AlChE. Symp. Ser. 70, 71 (1974).
26.Pan, C., Jones, B., Machiels, A.J., Nucl. Eng. Des. 99, 317 (1987).
27.Haq, I., Cinosi, N., Bluck, M., Hewitt, G., Walker, S., Nucl. Eng. Des. 241 (1), 155 (2011).
28.Simulated Fuel Crud Thermal Conductivity Measurements under Pressurized Water Reactor Conditions. EPRI, Palo Alto, CA, 2011 (1022896).
29.Uhle, J., “Boiling Heat Transfer Characteristics of Steam Generator U-Tube Fouling” (Cambridge, MA, 1996).
30.Kingery, W.D., Francl, J., Coble, R.L., Vasilos, T., J. Am. Ceram. Soc. 37 (2), 107 (1954).
31.“Thermal Expansion, Heat Capacity and Thermal Conductivity of Nickel Ferrite (NiFe2O4),” Los Alamos Technical Report, Number LA-UR-13–28786 (2013).
32.President’s Information Technology Advisory Committee, “Computational Science—Ensuring America’s Competitiveness” (Arlington, VA, 2005).
33.National Science Foundation, “Simulation-Based Engineering Science—Revolutionizing Engineering Science through Simulation” (Wiley, NY, 2006).
34.Kirk, B.S., Peterson, J.W., Stogner, R.H., Carey, G.F., Eng. Comput. 22 (3–4), 237 (2006).
35.Balay, S., Brown, J., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M., Curfman McInnes, L., Smith, B., Zhang, H., “PETSc User’s Manual” (Argonne National Laboratory, TN, 2013).
36.Wang, Y., in International Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2013) (Sun Valley, ID, 2013).
37.Zhang, H., Zou, L., Andrs, D., Zhao, H., Martineau, R., in International Conference on Mathematics and Computational Methods Applied to Nuclear Science & Engineering (M&C 2013) (Sun Valley, ID, 2013).
38.Williamson, R.L., Hales, J.D., Novascone, S.R., Tonks, M.R., Gaston, D.R., Permann, C.J., Andrs, D., Martineau, R.C., J. Nucl. Mater. 423, 149 (2012).
39.Walter, D., Collins, B., Petrov, V., Kendrick, B.K., Manera, A., Downar, T., in The 15th International Topical Meeting on Nuclear Reactor Thermalhydraulics, NURETH-15 (Pisa, Italy, 2013).
40.US Department of Energy, “From Quanta to the Continuum: Opportunities for Mesoscale Science” (2012).
41.Crabtree, G.W., Sarrao, J.L., MRS Bull. 37, 1079 (2012).
42.Laughlin, R.B., Pines, D., Schmalian, J., Stojkovic, B.P., Wolynes, P., Proc. Natl. Acad. Sci. U.S.A. 97, 32 (2000).
43.Was, G.S., Andresen, P.L., JOM 44 (4), 8 (1992).
44.Garzarolli, F., Adamson, R., Cox, B., Strasser, A., in ZIRAT Special Topic Report: Corrosion Mechanisms in Zirconium Alloys (ANT International, Sweden, 2007).
45.Idaho National Laboratory, “BISON Enables Complex Nuclear Fuel Modeling, Simulation,” (accessed 2013).
46.Evaluation of Fuel Clad Corrosion Product Deposits and Circulating Corrosion Products in PWRs, EPRI, Palo Alto, CA, and Westinghouse Electric Company, Pittsburgh, PA, 2004 (1009951).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed