Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T01:33:03.230Z Has data issue: false hasContentIssue false

On the Genesis of Nuclei and Phase Separation on an Atomic Scale

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Turnbull performed much experimental and theoretical research on nucleation and on fundamental aspects of phase transformations in condensed matter. Nucleation of precipitates followed in parallel or sequentially by their growth and coarsening is a complex scientific subject and technologically highly relevant because of the many critical roles played by structural metallic alloys and their relevance to the energy problem. The focus herein is on nucleation, growth, and coarsening of precipitates employing atom-probe tomography, lattice kinetic Monte Carlo simulations, and diffusion theory, which constitute a unique approach for studying phase separation in concentrated multicomponent alloys.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Sudbrack, C.K., PhD thesis, Northwestern University, Decomposition Behavior in Model Ni–Al–Cr–X Superalloys: Temporal Evolution and Compositional Pathways on a Nanoscale (2004).Google Scholar
2Seidman, D.N., Annu. Rev. Mater. Res. 37, 127 (2007).CrossRefGoogle Scholar
3Yoon, K.E., PhD thesis, Northwestern University, Temporal Evolution of the Chemistry and Nanostructure of Multicomponent Model Ni-Based Superalloys (2004).Google Scholar
4Sudbrack, C.K., Yoon, K.E., Mao, Z., Noebe, R.D., Isheim, D., Seidman, D.N., in Electron Microscopy: Its Role in Materials Research—The Mike Meshii Symposium, Weertman, J.R., Fine, M.E., Faber, K.T., King, W., Liaw, P., Eds. (TMS, Warrendale, PA, 2003), pp. 4350.Google Scholar
5Sudbrack, C.K., Yoon, K.E., Noebe, R.D., Seidman, D.N., Acta Mater. 54, 3199 (2006).CrossRefGoogle Scholar
6Sudbrack, C.K., Noebe, R.D., Seidman, D.N., Acta Mater. 55, 119 (2007).CrossRefGoogle Scholar
7Mao, Z., Sudbrack, C.K., Yoon, K.E., Martin, G., Seidman, D.N., Nature Materials 6, 210216 (2007).CrossRefGoogle Scholar
8Turnbull, D., in Solid State Physics: Advances in Research and Applications, Seitz, F., Turnbull, D., Eds. (Academic Press, New York, 1957), vol. 3, pp. 225306.Google Scholar
9Cargill, G.S. III, Spaepen, F., Tu, K.-N., Eds., Phase Transitions in Condensed Systems, MRS Proceedings (Materials Research Society, Pittsburgh, PA, 1985), vol. 57.Google Scholar
10Servi, I.S., Turnbull, D., Acta Metall. 14, 161 (1966).CrossRefGoogle Scholar
11Martin, G., in Solid State Phase Transformations in Metals and Alloys (Les Editions de Physique, Orsay, France, 1978), pp. 337406.Google Scholar
12Balluffi, R.W., Allen, S.M., Carter, W.C., Kinetics of Materials (Wiley, Hoboken, New Jersey, 2005), pp. 555562.CrossRefGoogle Scholar
13Blavette, D., Deconihout, B., Bostel, A., Sarrau, J.M., Bouet, M., Menand, A., Rev. Sci. Instrum. 64, 2911 (1993).CrossRefGoogle Scholar
14Cerezo, A., Godfrey, T.J., Sijbrandji, S.J., Smith, G.D.W., Warren, P.J., Rev. Sci. Instrum. 69, 49 (1998).CrossRefGoogle Scholar
15Russell, K.C., Adv. Colloid Interface Sci. 13, 205 (1980).CrossRefGoogle Scholar
16Soisson, F., Martin, G., Phys. Rev. B 62, 203 (2000).CrossRefGoogle Scholar
17Wagner, R., Kampmann, R., Voorhees, P.W., in Phase Transformations in Materials, Kostorz, G., Ed. (Wiley-VCH, Weinheim, 2001), pp. 309407.CrossRefGoogle Scholar
18Aaronson, H.I., LeGoues, F.K., Metall. Trans. A 23, 1915 (1992).CrossRefGoogle Scholar
19Stowell, M.J., Mater. Sci. Technol. 18, 139 (2002).CrossRefGoogle Scholar
20Liu, Z.G., Wagner, R., J. Phys. Colloq. C9, 441 (1984).Google Scholar
21Zhu, F., Haasen, P., Wagner, R., Acta Metall. 34, 457 (1986).CrossRefGoogle Scholar
22Kelly, T.F., Miller, M.K., Rev. Sci. Instrum. 78, 031101 (2007).CrossRefGoogle Scholar
23Hellman, O.C., Blatz du Rivage, J., Seidman, D.N., Ultramicroscopy 95, 199 (2003).CrossRefGoogle Scholar
24Marquis, E.A., Seidman, D.N., Asta, M., Woodward, C., Ozolins, V., Phys. Rev. Lett. 91, 036101 (2003).CrossRefGoogle Scholar
25Sudbrack, C.K., Noebe, R.D., Seidman, D.N., Phys. Rev. B 73, 212101 (2006).CrossRefGoogle Scholar
26Hellman, O.C., Vandenbroucke, J., du Rivage, J.B., Seidman, D.N., Mater. Sci. Eng. A 327, 29 (2002).CrossRefGoogle Scholar
27Soisson, F., Barbu, A., Martin, G., Acta Mater. 44, 3789 (1996).CrossRefGoogle Scholar
28Pareige, C., Soisson, F., Martin, G., Blavette, D., Acta Mater. 47, 1889 (1999).CrossRefGoogle Scholar
29Rautiainen, T.T., Sutton, A.P., Phys. Rev. B 59, 13681 (1999).CrossRefGoogle Scholar
30Athènes, M., Bellon, P., Martin, G., Acta Mater. 48, 3675 (2000).CrossRefGoogle Scholar
31Doyama, M., Koehler, J.S., Acta Metall. 24, 871 (1976).CrossRefGoogle Scholar
32Ardell, A.J., Ozolins, V., Nat. Mater. 4, 309 (2005).CrossRefGoogle Scholar
33Roussel, J.M., Bellon, P., Phys. Rev. B 63, 184114 (2001).CrossRefGoogle Scholar
34Lifshitz, I.M., Slyozov, V. V., J. Phys. Chem. Solids 19, 35 (1961).CrossRefGoogle Scholar
35Wagner, C., Z. Elektrochem. 65, 581 (1961).Google Scholar
36Martin, G., Desgranges, C., Europhys. Lett. 44, 150 (1998).CrossRefGoogle Scholar
37Seidman, D.N., Balluffi, R.W., in Lattice Defects and their Interactions, Hasiguti, R.R., Ed. (Gordon-Breach, New York, 1968), pp. 913960.Google Scholar
38Svoboda, J., Fischer, F.D., Fratzl, P., Kroupa, A., Acta Mater. 50, 1369 (2002).CrossRefGoogle Scholar
39Allnatt, A.R., Lidiard, A.B., Atomic Transport in Solids (Cambridge University Press, UK, 1993).CrossRefGoogle Scholar
40Hartmann, A., Weinkamer, R., Fratzl, P., Svoboda, J., Fischer, F.D., Philos. Mag. 85, 1243 (2005).CrossRefGoogle Scholar
41Barbe, V., Nastar, M., Philos. Mag. 86, 1513 (2006).CrossRefGoogle Scholar
42Allnatt, A.R., Lidiard, A.B., Atomic Transport in Solids (Cambridge University Press, Cambridge, UK, 1993).CrossRefGoogle Scholar
43Foiles, S.M., Adams, J.B., Phys. Rev. B 40, 5909 (1989).CrossRefGoogle Scholar
44Hellman, O.C., Vandenbroucke, J.A., Rüsing, J., Isheim, D., Seidman, D.N., Microsc. Microanal. 6, 437 (2000).CrossRefGoogle Scholar
45Andersson, J., Ågren, J.J. Appl. Phys. 72, 1350 (1992).CrossRefGoogle Scholar
46Thornton, K., Ågren, J., Voorhees, P.W., Acta Mater. 51, 5675 (2003).CrossRefGoogle Scholar
47Sudbrack, C.K., Noebe, R.D., Seidman, D.N., Physical Review B 73, 212101 (2006).CrossRefGoogle Scholar