Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T18:44:44.366Z Has data issue: false hasContentIssue false

Next-generation lithium-ion batteries: The promise of near-term advancements

Published online by Cambridge University Press:  09 May 2014

Jason R. Croy
Affiliation:
Argonne National Laboratory, USA; croy@anl.gov
Ali Abouimrane
Affiliation:
Argonne National Laboratory, USA; abouimrane@anl.gov
Zhengcheng Zhang
Affiliation:
Pacific Northwest National Laboratory, USA; jiguang.zhang@pnnl.gov
Get access

Abstract

The commercialization of lithium-ion batteries has intimately changed our lives and enabled portable electronic devices, which has revolutionized communications, entertainment, medicine, and more. After three decades of commercial development, researchers around the world are now pursuing major advances that would allow this technology to power the next generation of light-duty, electric, and hybrid-electric vehicles. If this goal is to be met, concerted advances in safety and cost, as well as cycle-life and energy densities, must be realized through advances in the properties of the highly correlated, but separate, components of lithium-ion energy-storage systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Whittingham, S., Chem. Rev. 104, 4271 (2004).Google Scholar
International Telecommunications Union, Measuring the Information Society (2013); http://www.itu.int/en/ITU-D/Statistics.Google Scholar
USCAR, USABC Goals for EV and PHEV Vehicles (2013); http://www.uscar.org/guest/article_view.php?articles_id=85.Google Scholar
Zhou, Y., Visualizing Electric Vehicle Sales (2013); http://energy.gov/articles/visualizing-electric-vehicle-sales.Google Scholar
Xu, B., Qian, D., Wang, Z., Meng, Y.S., Mater. Sci. Eng. R 73, 51 (2012).Google Scholar
Ellis, B.L., Town, K., Nazar, L.F., Electrochim. Acta 84, 145 (2012).Google Scholar
Thackeray, M.M., Wolverton, C., Isaacs, E.D., Energy Environ. Sci., 5, 7854 (2012).CrossRefGoogle Scholar
Meyers, R.A., Ed., Encyclopedia of Sustainability Science and Technology (Springer Science, New York, 2012). Chap. 2.Google Scholar
Chikkannanavar, S.B., Bernardi, D.M., Liu, L., J. Power Sources 248, 91 (2014).CrossRefGoogle Scholar
Thackeray, M.M., Kang, S.-H., Johnson, C.S., Vaughey, J.T., Benedek, R., Hackney, S.A., J. Chem. Mater. 17, 3112 (2007).CrossRefGoogle Scholar
Ohzuku, T., Nagayama, M., Tsuji, K., Ariyoshi, K., J. Mater. Chem. 21, 10179 (2011).CrossRefGoogle Scholar
Robertson, A.D., Bruce, P.G., Chem. Mater. 15, 1984 (2003).Google Scholar
Gallagher, K.G., Promises and Challenges of Lithium-and Manganese-Rich Transition-Metal-Oxide Cathodes (Vehicle Technologies Program Annual Merit Review, ES177, 2013).Google Scholar
Croy, J.R., Gallagher, K.G., Balasubramanian, M., Long, B.R., Thackeray, M.M., J. Electrochem. Soc. 161, A1 (2014).CrossRefGoogle Scholar
Armstrong, A.R., Holzapfel, M., Novak, P., Johnson, C.S., Kang, S.-H., Thackeray, M.M., Bruce, P.G., J. Am. Chem. Soc. 128, 8694 (2006).CrossRefGoogle Scholar
Croy, J.R., Gallagher, K.G., Balasubramanian, M., Chen, Z., Ren, Y., Kim, D.K., Kang, S.-H., Dees, D.W., Thackeray, M.M., J. Phys. Chem. C 117, 6525 (2013).Google Scholar
Bettge, M., Li, Y., Gallagher, K.G., Zhu, Y., Wu, Q., Lu, W., Bloom, I., Abraham, D.P., J. Electrochem. Soc. 160, A2046 (2013).Google Scholar
Gallagher, K.G., Croy, J.R., Balasubramanian, M., Bettge, M., Abraham, D.P., Burrell, A.K., Thackeray, M.M., Electrochem. Commun. 33, 96 (2013).Google Scholar
Sathiya, M., Rousse, G., Ramesha, K., Laisa, C.P., Vezin, H., Sougrati, M.T., Doublet, M.-L., Foix, D., Gonbeau, D., Walker, W., Prakash, A.S., Ben Hassine, M., Dupont, L., Tarascon, J.-M., Nat. Mater. 12, 827 (2013).CrossRefGoogle Scholar
Donghan, K., Sandi, G., Croy, J.R., Gallagher, K.G., Kang, S.-H., Lee, E., Slater, M.D., Johnson, C.S., Thackeray, M.M., J. Electrochem. Soc. 160, A31 (2013).Google Scholar
Long, B.R., Croy, J.R., Thackeray, M.M., “Tailoring the Spinel Component of Composite Layered-Layered-Spinel Electrodes,” 224th Meeting of the Electrochemical Society, San Francisco, CA, 2013; Abstract 819.Google Scholar
Patoux, S., Sannier, L., Lignier, H., Reynier, Y., Bourbon, C., Jouanneau, S., Le Cras, F., Martinet, S., Electrochim. Acta 53, 4137 (2008).Google Scholar
Chemelewski, K.R., Shin, D.W., Li, W., Manthiram, A., J. Mater. Chem. A 1, 3347 (2013).Google Scholar
Manthiram, A., J. Phys. Chem. Lett. 2, 176 (2011).Google Scholar
Yazami, R., Touzain, P., J. Power Sources 9, 365 (1983).CrossRefGoogle Scholar
Wen, C.J., Huggins, R.A., J. Electrochem. Soc. 128, 1181 (1981).CrossRefGoogle Scholar
Colbow, K.M., Dahn, J.R., Haering, R.R., J. Power Sources 26, 397 (1989).CrossRefGoogle Scholar
Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., Tarascon, J.-M., Nature 407, 496 (2000).CrossRefGoogle Scholar
Andresson, A.M., Edstrom, K., J. Electrochem. Soc. 148, A1100 (2001).CrossRefGoogle Scholar
Yang, J., Takeda, Y., Imanishi, N., Capiglia, C., Xie, J.Y., Yamamoto, O., Solid State Ionics 125, 152 (2002).Google Scholar
Todd, A.D.W., Mar, R.E., Dahn, J.R., J. Electrochem. Soc. 153, 1998 (2006).Google Scholar
Zhang, R., Whittingham, M.S., Electrochem. Solid State Lett. 13, A184 (2010).CrossRefGoogle Scholar
Liu, B., Abouimrane, A., Ren, Y., Balasubramanian, M., Wang, D.-P., Fang, Z.Z., Amine, K., Chem. Mater. 24, 4653 (2012).CrossRefGoogle Scholar
Liu, B., Abouimrane, A., Brown, D., Zhang, X., Ren, Y., Fang, Z.Z., Amine, K., J. Mater. Chem. A 1, 4376 (2013).CrossRefGoogle Scholar
Liu, B., Abouimrane, A., Ren, Y., Neuefeind, J., Fang, Z.Z., Amine, K., J. Electrochem. Soc. 160, A882 (2013).CrossRefGoogle Scholar
Havinga, E.E., Damsma, H., Hokkeling, P., J. Less-Common Met. 27, 169 (1972).Google Scholar
Xu, K., Chem. Rev. 104, 4303 (2004).Google Scholar
Yang, L., Ravdel, B., Lucht, B.L., Electrochem. Solid State Lett. 13, A95 (2010).Google Scholar
Hu, L., Zhang, Z., Amine, K., J. Power Sources 236, 175 (2013).Google Scholar
Okada, S., Ueno, M., Uebou, Y., Yamaki, J., J. Power Sources 146, 565 (2005).CrossRefGoogle Scholar
Cresce, A., Xu, K., J. Electrochem. Soc. 158, A337 (2011).Google Scholar
McMillan, R., Slegr, H., Shu, Z.X., Wang, W., J. Power Sources 8182, 20 (1999).CrossRefGoogle Scholar
Nanbu, N., Takimoto, K., Takehara, M., Ue, M., Sasaki, Y., Electrochem. Commun. 10, 783 (2008).Google Scholar
Wang, Z., Xu, J., Yao, W., Yao, Y., Yang, Y., ECS Trans. 41, 29 (2012).Google Scholar
Choi, N., Yew, K.H., Lee, K.Y., Sung, M., Kim, H., Kim, S., J. Power Sources 161, 1254 (2006).Google Scholar
Smart, M.C., Ratnakumar, B.V., Ryan-Mowrey, V.S., Surampudi, S., Prakash, G.K.S., Hu, J., Cheung, I., J. Power Sources 119121, 359 (2003).Google Scholar
Smart, M.C., Ratnakumar, B.V., Prakash, S.G., Krause, F.C., US Patent Application 2012141883 (February 14, 2012).Google Scholar
Zhang, Z., Hu, L., Wu, H., Weng, W., Koh, M., Redfern, P., Curtiss, L.A., Amine, K., Energy Environ. Sci. 6, 1806 (2013).Google Scholar
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Gaussian 03, Revision C.02 (Gaussian Inc., Wallingford, CT, 2004).Google Scholar
Shao, N., Sun, X.G., Dai, S., Jiang, D., J. Phys. Chem. B 115, 12120 (2011).Google Scholar
Achiha, T., Nakajima, T., Ohzawa, Y., Koh, M., Yamauchi, A., Kagawa, M., Aoyama, H., J. Electrochem. Soc. 157, A707 (2010).Google Scholar
Hu, L., Zhang, Z., Amine, K., Electrochem. Commun. 35, 76 (2013).CrossRefGoogle Scholar
Chen, X., Xu, W., Xiao, J., Engelhard, M.H., Ding, F., Mei, D., Hu, D., Zhang, J., Zhang, J., J. Power Sources 213, 160 (2012).CrossRefGoogle Scholar
Peled, E., Golodnitsky, D., Menachem, C., Bar-Tow, D., J. Electrochem. Soc. 145, 3482 (1998).CrossRefGoogle Scholar