Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T09:39:45.167Z Has data issue: false hasContentIssue false

Natural fibers for biocomposites

Published online by Cambridge University Press:  16 September 2011

Rowan W. Truss*
Affiliation:
School of Mechanical and Mining Engineering, and School of Chemical Engineering, The University of Queensland, Brisbane; r.truss@uq.edu.au
Get access

Abstract

There are a large number of natural fibers that have the potential to replace synthetic fibers made from glass, carbon, and polymers as the reinforcing phase in composites. Interest in these fibers has increased, as they offer a sustainable, readily available, high specific modulus option. The high modulus of cellulose crystals makes them attractive as a reinforcing phase in composites. These cellulose crystals are the key structural component in natural fibers, but the complex microstructure of the fiber means that the full value of the cellulose crystal modulus cannot be utilized. Moreover, the surface of natural fibers can have varying chemistry depending on the pretreatment of the fiber and the degree to which lignin and other hydrophobic materials are removed from the fiber. In addition, cellulose swells in contact with water, and this can degrade the properties of the fiber and composite. A better understanding of the surface properties and techniques to control the composite interface are required if natural fibers are to fulfill their potential.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Paillet, M., Dufresne, A., Macromolecules, 34, 6527 (2001).CrossRefGoogle Scholar
2.Favier, V., Chanzy, H., Cavaille, J.Y., Macromolecules 28, 6365 (1995).CrossRefGoogle Scholar
3.Bledzki, A.K., Gassan, J., Prog. Polym. Sci. 24, 221 (1999).Google Scholar
4.Lau, K.T., Ho, M.P., Au-Yeung, C.T., Cheung, H.Y., Int. J. Smart Nano Mater. 1, 13 (2010).Google Scholar
5.Callister, W.D., Materials Science and Engineering An Introduction (7th ed.) (John Wiley & Sons, Inc., NY, 2007).Google Scholar
6.John, M.J., Thomas, S., Carbohydr. Polym. 71, 343 (2008).Google Scholar
7.Cronier, D., Monties, B., Chabbert, B., J. Agric. Food. Chem. 53, 8279 (2005).Google Scholar
8.Ouajai, S., Shanks, R.A., Macromol. Biosci. 5, 124 (2005).CrossRefGoogle Scholar
9.Pietak, A., Korte, S., Tan, E., Downard, A., Staiger, M.P., Appl. Surf. Sci. 253, 3627 (2007).Google Scholar
10.Abdel-Halim, E.S., El-Rafie, M.H., Kohler, R., Polym. Plast. Technol. Eng. 47, 58 (2008).CrossRefGoogle Scholar
11.Wang, H.M., Postle, R., Kessler, R.W., Kessler, W., Text. Res. J. 73, 664 (2003).CrossRefGoogle Scholar
12.Wang, B., Sain, M., Oksman, K., Appl. Comp. Mater. 14, 89 (2007).CrossRefGoogle Scholar
13.Dorris, G.M., Gray, D., Cellul. Chem. Technol. 12, 9 (1978).Google Scholar
14.Johansson, L.-S., Microchim. Acta 138, 217 (2002).CrossRefGoogle Scholar
15.Johansson, L.-S., Campbell, J.M., Surf. Interface Anal. 36, 1018 (2004).CrossRefGoogle Scholar
16.Johansson, L.-S., Campbell, J., Koljonen, K., Kleen, M., Buchert, J., Surf. Interface Anal. 36, 706 (2004).Google Scholar
17.Mitchell, R., Carr, C.M., Parfitt, M., Vickerman, J.C., Jones, C., Cellulose 12, 629 (2005).CrossRefGoogle Scholar
18.Xu, Y., Li, K., Zhang, M., Colloids Surf. A 301, 255 (2007).CrossRefGoogle Scholar
19.Maximova, N., Österberg, M., Koljonen, K., Stenius, P., Cellulose 8, 113 (2001).CrossRefGoogle Scholar
20.Hornsby, P.R., Hinrichsen, E., Tarverdi, K., J. Mater. Sci. 32, 443 (1997).Google Scholar
21.Liu, F.P., Wolcott, M.P., Gardner, D.J., Rials, T.G., Comp. Interfaces 2, 419 (1994).Google Scholar
22.Papirer, E., Brendle, E., Balard, H., Vergelati, C., J. Adhes. Sci. Technol. 14, 321 (2000).Google Scholar
23.Tze, W.T.Y., Walinder, M.P., Gardiner, D.J., J. Adhes. Sci. Technol. 20, 743 (2006).CrossRefGoogle Scholar
24.Xie, Y., Hill, C.A.S., Xiao, Z., Militz, H., Mai, C.., Composites Part A 41, 806 (2010).Google Scholar
25.Maldas, D., Kokta, B.V., Daneaulf, C., J. Appl. Polym. Sci. 37, 751 (1989).Google Scholar
26.Botaro, V.R., Gandini, A., J. Thermoplast. Comp. Mater. 18, 107 (2005).CrossRefGoogle Scholar
27.Mohanty, K., Dryal, L.T., Misra, M., J. Mater. Sci. Lett. 21, 1885 (2002).CrossRefGoogle Scholar
28.Kazayawoko, M., Balatinecz, J.J., Matuana, L.M., J. Mater. Sci. 34, 6189 (1999).CrossRefGoogle Scholar
29.Dhakal, H.N., Zhang, Z.Y., Richardson, M.O.W., Comp. Sci. Technol. 67, 1674 (2007).Google Scholar
30.Mwaikambo, L.Y., Ansell, M.P., J. Appl. Poly. Sci. 84, 2222 (2002).Google Scholar
31.Ankerfors, M., Lindstrom, T., 9th Int. Conf. Wood Biofiber Plastic Comp., Madison, WI, 2123 May 2007.Google Scholar
32.Klemm, D., Schumann, D., Kramer, F., Hessler, N., Koth, D., Sultanova, B., Macromol. Symp. 280, 60 (2009).CrossRefGoogle Scholar
33.Revol, J.-F., Bradford, H., Giasson, J., Marchessault, R.H., Gray, D.G., Int. J. Biol. Macromol. 14, 170 (1992).Google Scholar
34.Revol, J.-F., Marchessault, R.H., Int. J. Biol. Macromol. 15, 329 (1993).CrossRefGoogle Scholar
35.Orts, W.J., Shey, J., Imam, S.H., Glenn, G.M., Guttman, M.E., Revol, J.-F., J. Polym. Environ. 13, 301 (2005).CrossRefGoogle Scholar
36.Klemm, D., Schumann, D., Kramer, F., Hessler, N., Hornung, M., Schmauder, H.-P., March, S., Adv. Polym. Sci. 205, 49 (2006).CrossRefGoogle Scholar