Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-17T13:16:20.674Z Has data issue: false hasContentIssue false

Nanoscience and Nanotechnology: The Key to New Studies in Areas of Science Outside of Nanoscience and Nanotechnology

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

In recent years, a new branch of nanoscience/nanotechnology seems to be emerging. This branch is characterized by the application of preparation methods and/or the diagnostic tools developed in nanoscience/nanotechnology in order to perform either new, decisive experiments or to open the way to novel applications in areas of science that were originally not related to nanoscience/nanotechnology, such as cancer research or quantum physics. In order to highlight the diversity of this new branch, we shall discuss the following four areas in which methods of nanoscience/nanotechnology are applied to other areas of science: (1) cancer therapy, (2) cellular labeling, (3) the synthesis of solid materials with tunable atomic structures, and (4) the new opportunities provided by nanoscience/nanotechnology to probe the limits of quantum physics, one of the classical problems of physics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 The Royal Swedish Academy of Sciences— Scientific Background on the Nobel Prize in Physics 2007; www.kva.se, Royal Swedish Academy of Sciences, Class of Physics, October 2007, Stockholm Sweden.Google Scholar
2Gleiter, H., Acta Mater. 56, 5857 (2008).CrossRefGoogle Scholar
3Keblinski, P., Phillpot, S.R., Wolf, D., Gleiter, H., Acta Mater. 45, 987 (1997).CrossRefGoogle Scholar
4Gleiter, H., Acta Mater. 48, 1 (2000).CrossRefGoogle Scholar
5Wuerschum, R., Reimann, K., Farber, P., Defect Diffus. Forum 143–147, 1463 (1997).CrossRefGoogle Scholar
6Medintz, I.L., Ueda, H.T., Goldamnn, E.R., Matoussi, H., Nat. Mater. 4, 435 (2005).Google Scholar
7Scheurich, P., Bild Der Wissenschaft Plus 30, (2008).Google Scholar
8Gleiter, H., Europhysics 20, 130 (1989).CrossRefGoogle Scholar
9Jing, J., Kramer, A., Birringer, R., Gleiter, H., Gonser, U.J., J. Non-Cryst. Solids 113, 167 (1989).Google Scholar
10Gleiter, H., J. Appl. Cryst. 24, 79 (1991).Google Scholar
11Sopu, D., Albe, K., Ritter, Y., Gleiter, H., Appl. Phys. Lett. (2009), in press.Google Scholar
12Weissmüller, J., Schubert, P., Franz, H., Birringer, R., Gleiter, H., Proc. VII Natl. Conf. on the Physics of Non-Crystall. Solids, Cambridge England, 49 August 1991.Google Scholar
13Weissmüller, J., Birringer, R., Gleiter, H., Key Eng. Mater. 77–78, 161 (1993).Google Scholar
14Weissmüller, J., Birringer, R., Gleiter, H. in “Proceedings of the TMS Annual Meeting,” New Orleans, 291 (1991).Google Scholar
15Yavari, A.R., LeMonlec, A., Inoue, A., Nishiyama, N., Lopo, N., Acta Mater. 53, 1611 (2005).Google Scholar
16Brezger, J., Arndt, M., Zeilinger, A., J. Opt. B: Quantum Semiclassical Opt. 3, 82 (2003).Google Scholar
17Loeffler, D., Jester, S., Boettcher, A., Kappes, M., J. Chem. Phys. 124, 054705 (2006).Google Scholar
18Nairz, O., Brezger, B., Arndt, M., Zeilinger, A., Phys. Rev. Lett. 87, 160401–1 (2001).Google Scholar
19Zurek, W.H., Rev. Mod. Phys. 75, 715 (2003).CrossRefGoogle Scholar
20Schimmel, Th., Walheim, G., Nachrichten Forschungszentrum Karlsruhe 54, 453 (2009).Google Scholar
21Gerlich, S., Hackemüller, L., Hornberger, K., Stibor, A., Ulbricht, H., Goldfarb, F., Savas, T., Mueri, M., Mayor, M., Arndt, M., Nat. Phys. 3, 711 (2007).Google Scholar
22Giulini, D., Joos, E., Kiefer, C., Kupsch, J., Stamatescu, O., Zeh, H.D., Decoherence and the Appearance of the Classical World in Quantum Theory (Springer, Berlin, 1996), p. 126.Google Scholar
23Joos, E., Decoherence and the Appearance of the Classical World in Quantum Theory (Springer, Berlin, 2003), p. 45.Google Scholar
24Giraldi, C.G., Rimini, A., Weber, T., Phys. Rev. D 34, 470 (1986).Google Scholar
25Penrose, R., Gen. Relativ. Gravitation 26, 581 (1996).Google Scholar
26Diosi, L., Phys. Rev. A 42, 5086 (1990).CrossRefGoogle Scholar
27Wang, C., Bingham, R., Mendonca, T., Classical Quantum Gravity 23, L59 (2006).CrossRefGoogle Scholar
28Carlipp, S., Classical Quantum Gravity (2009), in press.Google Scholar
29Baibich, M.N., Broto, J.M., Fert, A., Nguyen van Dau, F., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., Chazelas, J., Phys. Rev. Lett. 61, 2472 (1988).CrossRefGoogle Scholar
30Binasch, G., Grünberg, P., Saurenbach, F., Zinn, W., Phys. Rev. B 39, 4828 (1989).Google Scholar