Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-26T05:58:42.989Z Has data issue: false hasContentIssue false

Nanoionics Switching Devices: “Atomic Switches”

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Novel nanoionics devices, atomic switches, have been developed using a solid-electrochemical reaction to control the formation and annihilation of the metal filament between two electrodes. The switching operation can be achieved simply by the application of a bias voltage to precipitate metal atoms in a nanogap between the two electrodes or to dissolve them onto one of the electrodes. The small size of atomic switches enables rapid switching even though atomic motion is required. They also have several novel characteristics in that they are nonvolatile, consume less power, and have a simple structure and a low on-resistance. Logic gates and 1 kbit nonvolatile memory chips have been developed using atomic switches in order to demonstrate the possibilities for improving present-day electronic devices. Their characteristics also enable the fabrication of new types of electronic devices, such as high-performance programmable logic devices that may achieve a multitude of functions on a single chip.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Hirose, Y., Hirose, H., J. Appl. Phys. 47, 2767 (1976).CrossRefGoogle Scholar
2Peercy, P.S., Nature 406, 1023 (2000).CrossRefGoogle Scholar
3Chappert, C., Fert, A., van Dau, F.N., Nat. Mater. 6, 813 (2007).CrossRefGoogle Scholar
4Wuttig, M., Yamada, N., Nat. Mater. 6, 824 (2007).CrossRefGoogle Scholar
5Waser, R., Aono, M., Nat. Mater. 6, 833 (2007).CrossRefGoogle Scholar
6Emerging Research Devices in the International Technology Roadmap for Semiconductors, 2007: http://www.itrs.net/home.html.Google Scholar
7Wada, Y., Uda, T., Lutwyche, M., Kondo, S., Heike, S., J. Appl. Phys. 74, 7321 (1993).CrossRefGoogle Scholar
8Terabe, K., Nakayama, T., Hasegawa, T., Aono, M., Riken Rev. 37, 7 (2001).Google Scholar
9Kudo, T., Fueki, K., Solid State Ionics (Kodansha, Tokyo, 1990).Google Scholar
10Sone, H., Tamura, T., Miyazaki, K., Hosaka, S., Microelectron. Eng. 831, 487 (2006).Google Scholar
11Terabe, K., Nakayama, T., Hasegawa, T., Aono, M., J. Appl. Phys. 91, 10110 (2002).CrossRefGoogle Scholar
12Terabe, K., Nakayama, T., Hasegawa, T., Aono, M., Appl. Phys. Lett. 80, 4009 (2002).CrossRefGoogle Scholar
13Kaeriyama, S., Sakamoto, T., Sunamura, H., Mizuno, M., Kawaura, H., Hasegawa, T., Terabe, K., Nakayama, T., Aono, M., IEEE J. Solid-State Circuits 40, 168 (2005).CrossRefGoogle Scholar
14Snider, G., Applied Phys. A, 80, 1165 (2005).CrossRefGoogle Scholar
15Morales-Masis, M., van der Molen, S.J., Fu, W.T., Hesselberth, M.B., van Ruitenbeek, J.M., Nanotechnology, 20, 095710 (2009).CrossRefGoogle Scholar
16Tamura, T., Hasegawa, T., Terabe, K., Nakayama, T., Sakamoto, T., Sunamura, H., Kawaura, H., Hosaka, S., Aono, M., Jpn. J. Appl. Phys. 45 (12), L364 (2006).CrossRefGoogle Scholar
17Binnig, G., Rohrer, H., Gerber, C., Weibel, E., Phys. Rev. Lett. 50, 120 (1982).CrossRefGoogle Scholar
18Banno, N., Sakamoto, T., Fujieda, S., Aono, M., in Proc. Int. Reliabil. Phys. Symp. (2008), p. 707.Google Scholar
19Sakamoto, T., Sunamura, H., Kawaura, H., Hasegawa, T., Nakayama, T., Aono, M., Appl. Phys. Lett. 82, 3032 (2003).CrossRefGoogle Scholar
20Banno, N., Sakamoto, T., Iguchi, N., Kawaura, H., Kaeriyama, S., Mizuno, M., Terabe, K., Hasegawa, T., Aono, M., IEICE Trans. Electron. E89-C, 1492 (2006).CrossRefGoogle Scholar
21Kundu, M., Terabe, K., Hasegawa, T., Aono, M., J. Appl. Phys. 99, 103501 (2006).CrossRefGoogle Scholar
22Kundu, M., Terabe, K., Hasegawa, T., Aono, M., J. Appl. Phys. 103, 073523 (2008).CrossRefGoogle Scholar
23Liang, Ch., Terabe, K., Iyi, N., Hasegawa, T., Aono, M., J. Appl. Phys. 102, 124308 (2007).CrossRefGoogle Scholar
24Sakamoto, T., Lister, K., Banno, N., Hasegawa, T., Terabe, K., Aono, M., Appl. Phys. Lett. 91, 092110 (2007).CrossRefGoogle Scholar
25Liang, Ch., Terabe, K., Hasegawa, T., Aono, M., Appl. Phys. Express 1, 064002 (2008).CrossRefGoogle Scholar
26Schindler, C., Weides, M., Kozicki, M.K., Waser, R., Appl. Phys. Lett. 92, 122910 (2008).CrossRefGoogle Scholar
27Soni, R., Meuffels, P., Kohlstedt, H., Kohlstedt, C., Kugeler, C., Waser, R., Appl. Phys. Lett., 94, 123503 (2009).CrossRefGoogle Scholar
28Haemori, M., Nagata, T., Chikyow, T., Appl. Phys. Express, 2, 061401 (2009).CrossRefGoogle Scholar
29Aratani, K., Ohba, K., Mizuguchi, T., Yasuda, S., Shiimoto, T., Tsushima, T., Sone, T., Endo, K., Kouchiyama, A., Sasaki, S., Maesaka, A., Yamada, N., Narisawa, H., in IEDM Tech. Digest 783 (2007).Google Scholar
30Yang, J.J., Pickett, M.D., Li, X., Ohlberg, D.A.A., Stewart, D.R., Williams, R.S., Nat. Nanotech. 3, 429 (2008).CrossRefGoogle Scholar
31Baek, I.G., Lee, M.S., Seo, S., Lee, M.J., Seo, D.H., Suh, D.-S., Park, J.C., Park, S.O., Kim, H.S., Yoo, I.K., Chung, U.-In., Moon, J.T., IEDM Tech. Digest 587 (2005).Google Scholar
32Liang, Ch., Terabe, K., Hasegawa, T., Negishi, R., Tamura, T., Aono, M., Small, 10, 971 (2005).CrossRefGoogle Scholar
33Banno, N., Sakamoto, T., Iguchi, N., Kawaura, H., Kaeriyama, S., Mizuno, M., Terabe, K., Hasegawa, T., Aono, M., IEICE Trans. Electron. E89-C, 1492 (2006).CrossRefGoogle Scholar
34Terabe, K., Hasegawa, T., Nakayama, T., Aono, M., Nature 433, 47 (2005).CrossRefGoogle Scholar
35van Wees, B.J., van Houten, H., Beenakker, C.W.J., Williamson, J.G., Kouwenhoven, L.P., van der Marel, D., Foxon, C.T., Phys. Rev. Lett. 60, 848 (1988).CrossRefGoogle Scholar
36Ohnishi, H., Kondo, Y., Takayanagi, K., Nature 395, 780 (1998).CrossRefGoogle Scholar