Skip to main content Accessibility help
×
Home

Nanocrystalline Silicon for Optoelectronic Applications

  • Leonid Tsybeskov

Extract

Light emission in silicon has been intensively investigated since the 1950s when crystalline silicon (c-Si) was recognized as the dominant material in microelectronics. Silicon is an indirect-bandgap semiconductor and momentum conservation requires phonon assistance in radiative electron-hole recombination (Figure 1a, top left). Because phonons carry a momentum and an energy, the typical signature of phonon-assisted recombination is several peaks in the photoluminescence (PL) spectra at low temperature. These PL peaks are called “phonon replicas.” High-purity c-Si PL is caused by free-exciton self-annihilation with the exciton binding energy of ~11 meV. The TO-phonon contribution in conservation processes is most significant, and the main PL peak (~1.1 eV) is shifted from the bandgap value (~1.17 eV) by ~70 meV—that is, the exciton binding energy plus TO-phonon energy (Figure 1a).

Copyright

References

Hide All
1.Haynes, H.R. and Briggs, H.B., Phys. Rev. 86 (1952) p. 647;
Haynes, H.R. and Westphal, W.C., Phys. Rev. 101 (1956) p. 1676.
2.Vouk, M.A. and Lightowlers, E.C., J. Phys. C 10 (1977) p. 3689.
3.Yablonovitch, E., Altera, D.L., Chang, C.C., Gmitter, T., and Bright, T.B., Phys. Rev. Lett. 57 (1986) p. 249.
4.Collins, R.T., Fauchet, P.M., and Tischler, M.A., Phys. Today 50 (1997) p. 24;
Fauchet, P.M., in Light Emission in Silicon, edited by Lockwood, D.J., Semiconductors and Semimetals, vol. 49 (Academic Press, San Diego, CA, 1998) p. 206.
5.Canham, L.T., Appl. Phys. Lett. 57 (1990) p. 1046.
6.Richter, A., Steiner, P., Kozlowski, F., and Lang, W., IEEE Electron Device Lett. 12 (1991) p. 691;
Koshida, N. and Koyama, H., Appl. Phys. Lett. 60 (1992) p. 347;
Bsiesy, A., Miller, F., Ligeon, M., Gaspard, F., Herino, R., Romenstain, R., and Vial, J.C., Phys. Rev. Lett. 71 (1993) p. 637.
7.Tischler, M.A., Collins, R.T., Stathis, J.H., and Tsang, J.C., Appl. Phys. Lett. 60 (1992) p. 639.
8. For example, see Light Emission From Silicon, edited by Iyer, S.S., Collins, R.T., and Canham, L.T. (Mater. Res. Soc. Symp. Proc. 256, Pittsburgh, 1992);
Microcrystalline Semiconductors: Materials Science and Devices, edited by Fauchet, P.M., Tsai, C.C., Canham, L.T., Shimizu, I., and Aoyagi, Y. (Mater. Res. Soc. Symp. Proc. 283, Pittsburgh, 1993);
Microcrystalline and Nanocrystalline Semiconductors, edited by Collins, R.W., Tsai, C.C., Hirose, M., Koch, F., and Brus, L. (Mater. Res. Soc. Symp. Proc. 358, Pittsburgh, 1995);
Advanced Luminescent Materials, edited by Lockwood, D.J., Fauchet, P.M., Koshida, N., and Brueck, S.R.J. (The Electrochemical Society, Pennington, NJ, 1996);
Advances in Microcrystalline and Nanocrystalline Semiconductors-1996, edited by Collins, R.W., Fauchet, P.M., Shimizu, I., Vial, J.C., Shimada, T., and Alivisatos, A.P. (Mater. Res. Soc. Symp. Proc. 452, Pittsburgh, 1997).
9. Very popular definition of porous silicon.
10.Loni, A., Simons, A.J., Cox, T.I., Calcott, P.D.J., and Canham, L.T., Electron. Lett. 31 (1995) p. 1288.
11.Tsybeskov, L., Duttagupta, S.P., Hirschman, K.D., and Fauchet, P.M., Appl. Phys. Lett. 68 (1996) p. 2058.
12.Hirschman, K.D., Tsybeskov, L., Duttagupta, S.P., and Fauchet, P.M., Nature 384 (1996) p. 338.
13.Cullis, A.G. and Canham, L.T., Nature 353 (1991) p. 335.
14.Proot, J.P., Delerue, C., and Allan, G., Appl. Phys. Lett. 61 (1992) p. 1948;
Delerue, C., Allan, G., and Lannoo, M., Phys. Rev. B 48 (1993) p. 11024;
Takagahara, T. and Takeda, K., Phys. Rev. 46 (1992) p. 15578;
Zang, S.B. and Zunger, A., Appl. Phys. Lett. 63 (1993) p. 1399;
Hybertsen, M.S., Phys. Rev. Lett. 72 (1994) p. 1514.
15.Calcott, P.D.G., Nash, K.J., Canham, L.T., Kane, M.J., and Brumhead, D., J. Phys: Cond. Matter 5 (1993) p. L91;
J. Lumin. 57 (1993) p. 257.
16.Kanemitsu, Y., in Light Emission in Silicon, edited by Lockwood, D.J., Semiconductors and Semimetals, vol. 49 (Academic Press, San Diego, CA, 1998) p. 157.
17.Brus, L.E., Szajowski, P.F., Wilson, W.L., Harris, T.D., Schuppler, S., and Citrin, P.H., J. Am. Chem. Soc. 117 (1995) p. 2915.
18.Rosenbauer, M., Finkbeiner, S., Bustarret, E., Weber, J., and Stutzmann, M., Phys. Rev. B 51 (1995) p. 10539.
19.Kovalev, D., Hecker, H., Averboukh, B., BenChorin, M., Schwartzkopff, M., and Koch, F., Phys. Rev. 57 (1998) p. 3741.
20.Carlos, W.E. and Prokes, S.M., Appl. Phys. Lett. 65 (1994) p. 1245;
Prokes, S.M. and Glembocki, O.J., Phys. Rev. B 49 (1994) p. 2238;
Prokes, S.M., Carlos, W.E., and Glembocki, O.J., Phys. Rev. 50 (1994) p. 17093.
21.Wilson, W.L., Szajowski, P.F., and Brus, L.E., Science 262 (1993) p. 1242.
22.von Behren, J.et al., Solid State Communr 105 (1998) p. 317.
23.Mizuno, H., Koyama, H., and Koshida, N., Appl. Phys. Lett. 69 (1996) p. 3779.
24.Rao, P., Schiff, E.A., Tsybeskov, L., and Fauchet, P.M., in Advances in Microcrystalline and Nanocrystalline Semiconductors-1996, edited by Collins, R.W., Fauchet, P.M., Shimizu, I., Vial, J.C., Shimada, T., and Alivisatos, A.P. (Mater. Res. Soc. Symp. Proc. 452, Pittsburgh, 1997) p. 613.
25.Tsybeskov, L., Hirschman, K.D., Moore, L.F., Fauchet, P.M., and Calcott, P.D.G., Appl. Phys. Lett. 69 (1996) p. 687.
26.Tsybeskov, L., Hirschman, K.D., Duttagupta, S.P., and Fauchet, P.M., Appl. Phys. Lett. 69 (1996) p. 681.
27.Tsybeskov, L., Duttagupta, S.P., Hirschman, K.D., and Fauchet, P.M., in Advanced Luminescent Materials, edited by Lockwood, D.J., Fauchet, P.M., Koshida, N., and Brueck, S.R.J. (The Electrochemical Society, Pennington, NJ, 1996) p. 34.
28.Tsybeskov, L., Moore, K.L., Fauchet, P.M., and Hall, D.G., in Advances in Microcrystalline and Nanocrystalline Semiconductors-1996, edited by Collins, R.W., Fauchet, P.M., Shimizu, I., Vial, J.C., Shimada, T., and Alivisatos, A.P. (Mater. Res. Soc. Symp. Proc. 452, Pittsburgh, 1997) p. 523.
29.Duttagupta, S.P., Fauchet, P.M., Peng, C., Kurinec, S.K., Hirschman, K.D., and Blanton, T.N., in Microcrystalline and Nanocrystalline Semiconductors, edited by Collins, R.W., Tsai, C.C., Hirose, M., Koch, F., and Brus, L. (Mater. Res. Soc. Symp. Proc. 358, Pittsburgh, 1995) p. 647.
30.Frohnhoff, S. and Berger, M.G., Adv. Mater. 6 (1994) p. 963.
31.Pellegrini, V., Tredicucci, A., Mazzoleni, C., and Pavesi, L., Phys. Rev. B 52 (1995) p. R14328;
Pavesi, L., Mazzoleni, C., Tredicucci, A., and Pellegrini, V., Appl. Phys. Lett. 67 (1995) p. 3280.
32.Tsybeskov, L., Hirschman, K.D., Duttagupta, S.P., Fauchet, P.M., Zacharias, M., Kohlert, P., McCoffrey, J.P., and Lockwood, D.J., in Proc. Quantum Confinement: Nanoscale Materials, Devices and Systems, edited by Cahay, M., Leburton, J.P., Lockwood, D.J., and S. Bandyopadhyay, , vol. 97–11 (The Electrochemical Society, Pennington, NJ, 1997) p. 134.
33.Tsybeskov, L., Hirschman, K.D., Duttagupta, S.P., Zacharias, M., Fauchet, P.M., McCoffrey, J.P., and Lockwood, D.J., Appl. Phys. Lett. 72 (1) (1998) p. 43.
34.Bergh, A.A. and Dean, P.J., Light-Emitting Diodes (Clarendon Press, Oxford, 1976) p. 591.
35.Brown, T.G. and Hall, D.G., in Light Emission in Silicon: From Physics to Devices, edited by Lockwood, D.J., Semiconductors and Semimetals, vol. 49 (Academic Press, San Diego, 1998) p. 78.
36.Canham, L.T., MRS Bulletin XVIII (7) (1993) p. 22.

Nanocrystalline Silicon for Optoelectronic Applications

  • Leonid Tsybeskov

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed