Skip to main content Accessibility help
×
Home

Nanocomposites for thermoelectrics and thermal engineering

  • Bolin Liao (a1) and Gang Chen (a2)

Abstract

The making of composites has served as a working principle of achieving material properties beyond those of their homogeneous counterparts. The classical effective-medium theory models the constituent phases with local properties drawn from the corresponding bulk values, whose applicability becomes questionable when the characteristic size of individual domains in a composite shrinks to nanometer scale, and the interactions between domains induced by interfacial and size effects become important or even dominant. These unique features of nanocomposites have enabled engineering of extraordinary thermoelectric materials with synergistic effects among their constituents in recent years. For other applications requiring high thermal conductivity, however, interfacial and size effects on thermal transport in nanocomposites are not favorable, although certain practical applications often call for the composite approach. Therefore, understanding nanoscale transport in nanocomposites can help determine appropriate strategies for enhancing the thermal performance for different applications. We review the emerging principles of heat and charge transport in nanocomposites and provide working examples from both thermoelectrics and general thermal engineering.

Copyright

References

Hide All
1. Chu, S., Majumdar, A., Nature 488, 294 (2012).
2. Tritt, T.M., Subramanian, M.A., MRS Bull. 31, 188 (2006).
3. Tritt, T.M., Böttner, H., Chen, L., MRS Bull. 33, 366 (2008).
4. Bell, L.E., Science 321, 1457 (2008).
5. Zebarjadi, M., Esfarjani, K., Dresselhaus, M.S., Ren, Z.F., Chen, G., Energy Environ. Sci. 5, 5147 (2012).
6. Dresselhaus, M.S., Chen, G., Tang, M.Y., Yang, R.G., Lee, H., Wang, D.Z., Ren, Z.F., Fleurial, J.-P., Gogna, P., Adv. Mater. 19, 1043 (2007).
7. Goldsmid, H.J., Introduction to Thermoelectricity (Springer, New York, 2010).
8. Rayleigh, Lord, Philos. Mag. 34, 481 (1892).
9. Maxwell, J.C., A Treatise on Electricity and Magnetism (Clarendon, Oxford, UK, 1873), vol. 1.
10. Garnett, J.C. Maxwell, Philos. Trans. R. Soc. Lond. Math. Phys. Eng. Sci. 203, 385 (1904).
11. Datta, S., Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, UK, 1997).
12. Chen, G., Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons (Oxford University Press, Oxford; New York, 2005).
13. Nan, C.-W., Birringer, R., Clarke, D.R., Gleiter, H., J. Appl. Phys. 81, 6692 (1997).
14. Herring, C., J. Appl. Phys. 31, 1939 (1960).
15. Bergman, D.J., Levy, O., J. Appl. Phys. 70, 6821 (1991).
16. Fu, D., Levander, A.X., Zhang, R., Ager, J.W., Wu, J., Phys. Rev. B 84, 045205 (2011).
17. Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M.S., Chen, G., Ren, Z., Science 320, 634 (2008).
18. Pei, Y., Shi, X., LaLonde, A., Wang, H., Chen, L., Snyder, G.J., Nature 473, 66 (2011).
19. Biswas, K., He, J., Blum, I.D., Wu, C.-I., Hogan, T.P., Seidman, D.N., Dravid, V.P., Kanatzidis, M.G., Nature 489, 414 (2012).
20. Heremans, J.P., Dresselhaus, M.S., Bell, L.E., Morelli, D.T., Nat. Nanotechnol. 8, 471 (2013).
21. Wu, H.J., Zhao, L.-D., Zheng, F.S., Wu, D., Pei, Y.L., Tong, X., Kanatzidis, M.G., He, J.Q., Nat. Commun. 5, 5515 (2014).
22. Daembkes, H., Ed., Modulation-Doped Field-Effect Transistors: Principles, Design and Technology (IEEE Press, New York, 1990).
23. Zebarjadi, M., Joshi, G., Zhu, G., Yu, B., Minnich, A., Lan, Y., Wang, X., Dresselhaus, M., Ren, Z., Chen, G., Nano Lett. 11, 2225 (2011).
24. Yu, B., Zebarjadi, M., Wang, H., Lukas, K., Wang, H., Wang, D., Opeil, C., Dresselhaus, M., Chen, G., Ren, Z., Nano Lett. 12, 2077 (2012).
25. Mahan, G.D., Sofo, J.O., Proc. Natl. Acad. Sci. U.S.A. 93, 7436 (1996).
26. Lundstrom, M., Fundamentals of Carrier Transport (Cambridge University Press, New York, 2009).
27. Bohren, C.F., Huffman, D.R., Absorption and Scattering of Light by Small Particles (Wiley-VCH, New York, 1998).
28. Schiff, L.I., Quantum Mechanics (McGraw-Hill College, New York, 1968).
29. Zebarjadi, M., Esfarjani, K., Shakouri, A., Bahk, J.-H., Bian, Z., Zeng, G., Bowers, J., Lu, H., Zide, J., Gossard, A., Appl. Phys. Lett. 94, 202105 (2009).
30. Bahk, J.-H., Santhanam, P., Bian, Z., Ram, R., Shakouri, A., Appl. Phys. Lett. 100, 012102 (2012).
31. Liao, B., Zebarjadi, M., Esfarjani, K., Chen, G., Phys. Rev. Lett. 109, 126806 (2012).
32. Zebarjadi, M., Liao, B., Esfarjani, K., Dresselhaus, M., Chen, G., Adv. Mater. 25, 1577 (2013).
33. Shen, W., Tian, T., Liao, B., Zebarjadi, M., Phys. Rev. B 90, 075301 (2014).
34. Liao, B., Zebarjadi, M., Esfarjani, K., Chen, G., Phys. Rev. B. 88, 155432 (2013).
35. Hicks, L.D., Dresselhaus, M.S., Phys. Rev. B 47, 12727 (1993).
36. Hicks, L.D., Dresselhaus, M.S., Phys. Rev. B 47, 16631 (1993).
37. Harman, T.C., Taylor, P.J., Walsh, M.P., LaForge, B.E., Science 297, 2229 (2002).
38. Hicks, L.D., Harman, T.C., Sun, X., Dresselhaus, M.S., Phys. Rev. B 53, R10493 (1996).
39. Venkatasubramanian, R., Siivola, E., Colpitts, T., O’Quinn, B., Nature 413, 597 (2001).
40. Chowdhury, I., Prasher, R., Lofgreen, K., Chrysler, G., Narasimhan, S., Mahajan, R., Koester, D., Alley, R., Venkatasubramanian, R., Nat. Nanotechnol. 4, 235 (2009).
41. Boukai, A.I., Bunimovich, Y., Tahir-Kheli, J., Yu, J.-K., Goddard Iii, W.A., Heath, J.R., Nature 451, 168 (2008).
42. Ohta, H., Kim, S., Mune, Y., Mizoguchi, T., Nomura, K., Ohta, S., Nomura, T., Nakanishi, Y., Ikuhara, Y., Hirano, M., Hosono, H., Koumoto, K., Nat. Mater. 6, 129 (2007).
43. Casimir, H.B.G., Physica 5, 495 (1938).
44. Chen, G., Tien, C.L., Wu, X., Smith, J.S., J. Heat Transf. 116, 325 (1994).
45. Lee, S.-M., Cahill, D.G., Venkatasubramanian, R., Appl. Phys. Lett. 70, 2957 (1997).
46. Borca-Tasciuc, T., Liu, W., Liu, J., Zeng, T., Song, D.W., Moore, C.D., Chen, G., Wang, K.L., Goorsky, M.S., Radetic, T., Gronsky, R., Koga, T., Dresselhaus, M.S., Superlattices Microstruct. 28, 199 (2000).
47. Capinski, W.S., Maris, H.J., Ruf, T., Cardona, M., Ploog, K., Katzer, D.S., Phys. Rev. B 59, 8105 (1999).
48. Chen, G., J. Heat Transf. 119, 220 (1997).
49. Chen, G., Phys. Rev. B 57, 14958 (1998).
50. Garg, J., Chen, G., Phys. Rev. B 87, 140302 (2013).
51. Minnich, A.J., Dresselhaus, M.S., Ren, Z.F., Chen, G., Energy Environ. Sci. 2, 466 (2009).
52. Lan, Y., Minnich, A.J., Chen, G., Ren, Z., Adv. Funct. Mater. 20, 357 (2010).
53. Liu, W., Yan, X., Chen, G., Ren, Z., Nano Energy 1, 42 (2012).
54. Kim, S.I., Lee, K.H., Mun, H.A., Kim, H.S., Hwang, S.W., Roh, J.W., Yang, D.J., Shin, W.H., Li, X.S., Lee, Y.H., Snyder, G.J., Kim, S.W., Science 348, 109 (2015).
55. Hsu, K.F., Loo, S., Guo, F., Chen, W., Dyck, J.S., Uher, C., Hogan, T., Polychroniadis, E.K., Kanatzidis, M.G., Science 303, 818 (2004).
56. Zhou, M., Li, J.-F., Kita, T., J. Am. Chem. Soc. 130, 4527 (2008).
57. Li, Z.-Y., Li, J.-F., Adv. Energy Mater. 4, 1300937 (2014).
58. Quarez, E., Hsu, K.-F., Pcionek, R., Frangis, N., Polychroniadis, E.K., Kanatzidis, M.G., J. Am. Chem. Soc. 127, 9177 (2005).
59. Biswas, K., He, J., Zhang, Q., Wang, G., Uher, C., Dravid, V.P., Kanatzidis, M.G., Nat. Chem. 3, 160 (2011).
60. Wang, Y., Lee, K.H., Ohta, H., Koumoto, K., J. Appl. Phys. 105, 103701 (2009).
61. Wan, C., Gu, X., Dang, F., Itoh, T., Wang, Y., Sasaki, H., Kondo, M., Koga, K., Yabuki, K., Snyder, J., Yang, R., Kuomoto, K., Nat. Mater. 14, 622 (2015).
62. Broido, D.A., Malorny, M., Birner, G., Mingo, N., Stewart, D.A., Appl. Phys. Lett. 91, 231922 (2007).
63. Esfarjani, K., Chen, G., Stokes, H.T., Phys. Rev. B 84, 085204 (2011).
64. Tian, Z., Garg, J., Esfarjani, K., Shiga, T., Shiomi, J., Chen, G., Phys. Rev. B 85, 184303 (2012).
65. Luo, T., Garg, J., Shiomi, J., Esfarjani, K., Chen, G., Europhys. Lett. 101, 16001 (2013).
66. Liao, B., Lee, S., Esfarjani, K., Chen, G., Phys. Rev. B 89, 035108 (2014).
67. Lee, S., Esfarjani, K., Mendoza, J., Dresselhaus, M.S., Chen, G., Phys. Rev. B 89, 085206 (2014).
68. Tian, Z., Lee, S., Chen, G., J. Heat Transf. 135, 061605 (2013).
69. Qiu, B., Tian, Z., Vallabhaneni, A., Liao, B., Mendoza, J.M., Restrepo, O.D., Ruan, X., Chen, G., Europhys. Lett. 109, 57006 (2015).
70. Liao, B., Zhou, J., Qiu, B., Dresselhaus, M.S., Chen, G., Phys. Rev. B 91, 235419 (2015).
71. Slack, G.A., in Solid State Physics, Ehrenreich, H., Seitz, F., Turnbull, D., Eds. (Academic Press, New York, 1979), vol. 34, pp. 171.
72. Cahill, D.G., Pohl, R.O., Annu. Rev. Phys. Chem. 39, 93 (1988).
73. Chen, G., in Semiconductors and Semimetals, Tritt, T.M., Ed. (Elsevier, 2001), vol. 71 of Recent Trends in Thermoelectric Materials Research III, pp. 203259.
74. Chiritescu, C., Cahill, D.G., Nguyen, N., Johnson, D., Bodapati, A., Keblinski, P., Zschack, P., Science 315, 351 (2007).
75. Ma, J., Parajuli, B.R., Ghossoub, M.G., Mihi, A., Sadhu, J., Braun, P.V., Sinha, S., Nano Lett. 13, 618 (2013).
76. Zen, N., Puurtinen, T.A., Isotalo, T.J., Chaudhuri, S., Maasilta, I.J., Nat. Commun. 5, 4435 (2014).
77. Yu, J.-K., Mitrovic, S., Tham, D., Varghese, J., Heath, J.R., Nat. Nanotechnol. 5, 718 (2010).
78. Hopkins, P.E., Reinke, C.M., Su, M.F., Olsson, R.H., Shaner, E.A., Leseman, Z.C., Serrano, J.R., Phinney, L.M., El-Kady, I., Nano Lett. 11, 107 (2011).
79. Yang, L., Yang, N., Li, B., Nano Lett. 14, 1734 (2014).
80. Li, N., Ren, J., Wang, L., Zhang, G., Hänggi, P., Li, B., Rev. Mod. Phys. 84, 1045 (2012).
81. Maldovan, M., Nature 503, 209 (2013).
82. Gorishnyy, T., Ullal, C.K., Maldovan, M., Fytas, G., Thomas, E.L., Phys. Rev. Lett. 94, 115501 (2005).
83. Cheng, W., Wang, J., Jonas, U., Fytas, G., Stefanou, N., Nat. Mater. 5, 830 (2006).
84. Zhu, G., Swinteck, N.Z., Wu, S., Zhang, J.S., Pan, H., Bass, J.D., Deymier, P.A., Banerjee, D., Yano, K., Phys. Rev. B 88, 144307 (2013).
85. Luckyanova, M.N., Garg, J., Esfarjani, K., Jandl, A., Bulsara, M.T., Schmidt, A.J., Minnich, A.J., Chen, S., Dresselhaus, M.S., Ren, Z., Fitzgerald, E.A., Chen, G., Science 338, 936 (2012).
86. Tian, Z., Esfarjani, K., Chen, G., Phys. Rev. B 89, 235307 (2014).
87. Dames, C., Chen, G., J. Appl. Phys. 95, 682 (2004).
88. Chalopin, Y., Esfarjani, K., Henry, A., Volz, S., Chen, G., Phys. Rev. B 85, 195302 (2012).
89. Sheng, P., Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena (Academic Press, San Diego, 1995).
90. Prasher, R., Proc. IEEE 94, 1571 (2006).
91. Wong, C.P., Bollampally, R.S., J. Appl. Polym. Sci. 74, 3396 (1999).
92. Mamunya, Y.P., Davydenko, V.V., Pissis, P., Lebedev, E.V., Eur. Polym. J. 38, 1887 (2002).
93. Han, Z., Fina, A., Prog. Polym. Sci. 36, 914 (2011).
94. Shen, S., Henry, A., Tong, J., Zheng, R., Chen, G., Nat. Nanotechnol. 5, 251 (2010).
95. Singh, V., Bougher, T.L., Weathers, A., Cai, Y., Bi, K., Pettes, M.T., McMenamin, S.A., Lv, W., Resler, D.P., Gattuso, T.R., Altman, D.H., Sandhage, K.H., Shi, L., Henry, A., Cola, B.A., Nat. Nanotechnol. 9, 384 (2014).
96. Kim, G.-H., Lee, D., Shanker, A., Shao, L., Kwon, M.S., Gidley, D., Kim, J., Pipe, K.P., Nat. Mater. 14, 295 (2015).
97. Kirkpatrick, S., Rev. Mod. Phys. 45, 574 (1973).
98. Wang, J.J., Zheng, R.T., Gao, J.W., Chen, G., Nano Today 7, 124 (2012).
99. Zheng, R., Gao, J., Wang, J., Feng, S.-P., Ohtani, H., Wang, J., Chen, G., Nano Lett. 12, 188 (2012).
100. Gao, J.W., Zheng, R.T., Ohtani, H., Zhu, D.S., Chen, G., Nano Lett. 9, 4128 (2009).
101. Lu, P.J., Zaccarelli, E., Ciulla, F., Schofield, A.B., Sciortino, F., Weitz, D.A., Nature 453, 499 (2008).

Keywords

Nanocomposites for thermoelectrics and thermal engineering

  • Bolin Liao (a1) and Gang Chen (a2)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed