Skip to main content Accessibility help
×
Home

Contents:

Information:

  • Access

Actions:

      • Send article to Kindle

        To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

        Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

        Find out more about the Kindle Personal Document Service.

        Nano Focus: Scanning thermoelectric microscopy locates extra electrons outside quantum dots
        Available formats
        ×

        Send article to Dropbox

        To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

        Nano Focus: Scanning thermoelectric microscopy locates extra electrons outside quantum dots
        Available formats
        ×

        Send article to Google Drive

        To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

        Nano Focus: Scanning thermoelectric microscopy locates extra electrons outside quantum dots
        Available formats
        ×
Export citation

Semiconducting quantum dots (QDs) can be used to enhance the performance of a variety of devices encompassing optoelectronic, thermoelectric, and alternative energy technologies. Often, a small amount of another element must be added to the semiconducting QDs to provide extra electrons and improve conductivity. At the nanoscale, these extra electrons are difficult to locate. Rachel Goldman and her colleagues at the University of Michigan have now shown the feasibility of such measurements.

As reported in the May 11 issue of Applied Physics Letters (DOI: 10. 1063/1.4919919; 192101), the researchers used scanning thermoelectric microscopy to locate electrons in semiconducting QDs on surfaces. Beginning with high-purity solid Ga, As2, and In as the raw materials, they used molecular beam epitaxy and employed Stranski–Krastanov growth to fabricate InAs QDs on a GaAs substrate. Such structures can be doped with another element, such as Si, to provide extra electrons. However, it is difficult to predict how many of the dopants will incorporate into a QD rather than into the surrounding layers. Each QD is believed to contain fewer than 10 dopant atoms, making them particularly challenging to locate.

The researchers then used a scanning thermoelectric microscope (SThEM) with a specially prepared tungsten tip. The meas-urements were performed in ultrahigh vacuum, and the sample was heated a few Kelvins above room temperature for several hours to achieve a uniform temperature in the QD, surrounding layers, and substrate. Upon contact, the SThEM tip locally cools the QD, causing the extra electrons in the hot sample to travel toward the cold tip, generating a thermoelectric voltage. Since this voltage depends on the number of electrons, the research team was able to locate those extra electrons using measurements at several points across the QD.

Specifically, the dependence of the thermoelectric voltage on the thermopower allowed the researchers to locate the extra electrons: they found fewer electrons within the interior of the QD than in the surrounding substrate, which could mean that the silicon “dopants” prefer to stay outside the QD.

“We were really interested in measuring the thermopower, since QDs are considered promising for thermoelectrics,” doctoral student and NSF Fellow Jenna Walrath wrote of her original goals for the research. Goldman and Walrath were surprised by the unusual behavior of the QD thermopower, and their efforts to explain it led them to locating the extra electrons.

Schematic of the scanning thermoelectric microscope setup, which consists of a room-temperature probe tip in contact with a heated sample. The yellow dashed line represents the measurement points of the thermoelectric voltage at each tip-sample contact. Reproduced with permission from Appl. Phys. Lett. 106, 192101 (2015); DOI: 10.1063/1.4919919.

“While the answer wasn’t that exciting for thermoelectrics, understanding how dopants incorporate into nanostructures is unprecedented. The lessons learned from this work provide a pathway toward strategic placement of just a few dopants at a time,” Walrath says.

Their work could be extended to other nanostructures such as quantum wells and nanowires. “The potential of SThEM is just beginning to be explored,” Goldman says, “so I expect it will continue to play a central role in bridging atoms to devices.”