Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-18T02:45:18.416Z Has data issue: false hasContentIssue false

Multiscale 3D characterization with dark-field x-ray microscopy

Published online by Cambridge University Press:  08 June 2016

Hugh Simons
Affiliation:
Department of Physics, Technical University of Denmark, Denmark; husimo@fysik.dtu.dk
Anders Clemen Jakobsen
Affiliation:
Department of Physics, Technical University of Denmark, Denmark; andcj@fysik.dtu.dk
Sonja Rosenlund Ahl
Affiliation:
Department of Physics, Technical University of Denmark, Denmark; sroh@fysik.dtu.dk
Carsten Detlefs
Affiliation:
European Synchrotron Radiation Facility, France; detlefs@esrf.fr
Henning Friis Poulsen
Affiliation:
Department of Physics, Technical University of Denmark, Denmark; hfpo@fysik.dtu.dk
Get access

Abstract

Dark-field x-ray microscopy is a new way to three-dimensionally map lattice strain and orientation in crystalline matter. It is analogous to dark-field electron microscopy in that an objective lens magnifies diffracting features of the sample; however, the use of high-energy synchrotron x-rays means that these features can be large, deeply embedded, and fully mapped in seconds to minutes. Simple reconfiguration of the x-ray objective lens allows intuitive zooming between different scales down to a spatial and angular resolution of 100 nm and 0.001°, respectively. Three applications of the technique are presented—mapping the evolution of subgrains during the processing of plastically deformed aluminum, mapping domains and strain fields in ferroelectric crystals, and the three-dimensional mapping of strain fields around individual dislocations. This ability to directly characterize complex, multiscale phenomena in situ is a key step toward formulating and validating multiscale models that account for the entire heterogeneity of materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Liu, H.H., Schmidt, S., Poulsen, H.F., Godfrey, A., Liu, Z.Q., Sharon, J., Huang, X., Science 332, 833 (2011).CrossRefGoogle Scholar
Midgley, P.A., Dunin-Borkowski, R.E., Nat. Mater. 8, 271 (2009).CrossRefGoogle Scholar
Zaafarani, N., Raabe, D., Singh, R.N., Roters, F., Zaefferer, S., Acta Mater. 54, 1863 (2006).CrossRefGoogle Scholar
Uchic, M.D., Groeber, M.A., Dimiduk, D.M., Simmons, J.P., Scr. Mater. 55, 23 (2006).CrossRefGoogle Scholar
Larson, B.C., Yang, W., Ice, G.E., Budai, J.D., Tischler, J.Z., Nature 415, 887 (2002).CrossRefGoogle Scholar
Hofmann, F., Abbey, B., Liu, W., Xu, R., Usher, B.F., Balaur, E., Liu, Y., Nat. Commun. 4, 2774 (2014).CrossRefGoogle Scholar
Schroer, C.G., Kurapova, O., Patommel, J., Boye, P., Feldkamp, J., Lengeler, B., Burghammer, M., Riekel, C., Vince, L., van der Hart, A., Küchler, M., Appl. Phys. Lett. 87, 124103 (2005).CrossRefGoogle Scholar
Mimura, H., Handa, S., Kimura, T., Yumoto, H., Yamakawa, D., Yokoyama, H., Matsuyama, S., Inagaki, K., Yamamura, K., Sano, Y., Tamakaku, K., Nishino, Y., Yabashi, M., Ishikawa, T., Yamauchi, K., Nat. Phys. 6, 122 (2010).CrossRefGoogle Scholar
Ice, G., Budai, J.D., Pang, J.W.L., Science 334, 1234 (2011).CrossRefGoogle ScholarPubMed
Dierolf, M., Menzel, A., Thibault, P., Schneider, P., Kewish, C.M., Wepf, R., Bunk, O., Pfeiffer, F., Nature 467, 436 (2010).CrossRefGoogle Scholar
Pfeifer, M.A., Williams, G.J., Vartanyants, I.A., Harder, R., Robinson, I.K., Nature 442, 63 (2006).CrossRefGoogle Scholar
Shapiro, D., Thibault, P., Beetz, T., Elser, V., Howells, M., Jacobsen, C., Kirz, J., Lima, E., Miao, H., Neiman, A., Sayre, D., Proc. Natl. Acad. Sci. U.S.A. 102, 15343 (2005).CrossRefGoogle Scholar
Poulsen, H.F., Nielsen, S.F., Lauridsen, E.M., Schmidt, S., Suter, R.M., Lienert, U., Margulies, L., Lorentzen, T., Jensen, D.J., J. Appl. Crystallogr. 34, 751 (2001).CrossRefGoogle Scholar
Schmidt, S., Nielsen, S.F., Gundlach, C., Margulies, L., Huang, X., Jensen, D.J., Science 305, 229 (2004).CrossRefGoogle Scholar
Jakobsen, B., Poulsen, H.F., Lienert, U., Almer, J., Shastri, S.D., Sørensen, H.O., Gundlach, C., Pantleon, W., Science 312, 889 (2006).CrossRefGoogle Scholar
Hefferan, C.M., Lind, J., Li, S.F., Lienert, U., Rollett, A.D., Suter, R.M., Acta Mater. 60, 4311 (2012).CrossRefGoogle Scholar
King, A., Johnson, G., Engelberg, D., Ludwig, W., Marrow, J., Science 321, 382 (2008).CrossRefGoogle Scholar
Ludwig, W., Reischig, P., King, A., Herbig, M., Lauridsen, E.M., Johnson, G., Marrow, T.J., Buffière, J.-Y.. Rev. Sci. Instrum. 80, 033905 (2009).CrossRefGoogle Scholar
Stöhr, F., Wright, J., Simons, H., Michael-Lindhard, J., Hübner, J., Jensen, F., Hansen, O., Poulsen, H.F.. J. Micromech. Microeng. 25, 125013 (2015).CrossRefGoogle Scholar
Ludwig, W., Cloetens, P., Härtwig, J., Baruchel, J., Hamelin, B., Bastie, P., J. Appl. Crystallogr. 34, 602 (2001).CrossRefGoogle Scholar
Snigirev, A., Kohn, V., Snigireva, I., Lengeler, B., Nature 384, 49 (1996).CrossRefGoogle Scholar
Simons, H., King, A., Ludwig, W., Detlefs, C., Pantleon, W., Schmidt, S., Stöhr, F., Snigireva, I., Snigirev, A., Poulsen, H.F.. Nat. Commun. 6, 6098 (2015).CrossRefGoogle Scholar
Ahl, S.R., Simons, H., Jakobsen, A.C., Zhang, Y.B., Stöhr, F.. Juul Jensen, D., Poulsen, H.F., IOP Conf. Ser. Mater. Sci. Eng. 89, 012016 (2015).CrossRefGoogle Scholar
Ahl, S.R., Simons, H., Jakobsen, A.C., Jensen, D.J., Poulsen, H.F., “Multiscale 3D Mapping of Embedded Recrystallizing Grains in Aluminum,” Oral presentation at the 3rd International Congress on 3D Materials Science (3DMS), St. Charles, IL, July 10–13 2016 (accepted), http://www.tms.org/Meetings/2016/3DMS2016/technicalProgram.aspx#.Vye5A5N95E4.Google Scholar
Damjanovic, D., Rep. Prog. Phys. 61, 1267 (1998).CrossRefGoogle Scholar
Siedel, J., Martin, L.W., He, Q., Zhan, Q., Chu, Y.-H., Rother, A., Hawkridge, M.E., Maksymovych, P., Yu, P., Gajek, M., Balke, N., Kalinen, S.V., Gemming, S., Wang, F., Catalan, G., Scott, J.F., Spaldin, N.A., Orenstein, J., Ramesh, R., Nat. Mater. 8, 229 (2009).CrossRefGoogle Scholar
Catalan, G., Lubk, A., Vlooswijk, H.G., Snoeck, E., Magen, C., Janssens, A., Rispens, G., Rijnders, G., Blank, D.H.A., Noheda, B., Nat. Mater. 10, 963 (2011).CrossRefGoogle Scholar
Simons, H., Jakobsen, A.C., Ahl, S.R., Detlefs, C., Poulsen, H.F., “Multiscale 3D Characterization with Dark-Field X-Ray Microscopy,” Presented at the Danscatt Annual Meeting, Aarhus, Denmark, May 28–29 2015, http://www.bioxray.au.dk/∼thirup/Danscatt2015/Programme.pdf.Google Scholar
Zubko, P., Catalan, G., Tagantsev, A.K., Annu. Rev. Mater. Res. 43, 387 (2013).CrossRefGoogle Scholar
Gu, Y., Li, M., Morozovska, A.N., Wang, Y., Eliseev, E.A., Gopolan, V., Chen, L.-Q., Phys. Rev. B Condens. Matter 89, 174111 (2014).CrossRefGoogle Scholar
Liu, G.S., House, S.D., Kacher, J., Tanaka, M., Higashida, K., Robertson, I.M., Mater. Charact. 87, 1 (2014).CrossRefGoogle Scholar
Hänscke, D., Helfen, L., Altapova, V., Danilewsky, A., Baumbach, T., Appl. Phys. Lett. 101, 244103 (2012).CrossRefGoogle Scholar
Tanner, B.K., X-ray Diffraction Topography (Pergamon Press, Oxford, UK, 1976).Google Scholar
Jakobsen, A.C., Simons, H., Ahl, S.R., Detlefs, C., Härtwig, J., Poulsen, H.F., “Mapping of Embedded Dislocations in Diamond with Sub 200 nm Resolution,” Oral presentation at the 3rd International Congress on 3D Materials Science (3DMS), St. Charles, IL, July 10–13 2016 (accepted), http://www.tms.org/Meetings/2016/3DMS2016/technicalProgram.aspx#.Vye5A5N95E4.Google Scholar
Mathiesen, R.H., Arnberg, L., Li, Y., Meier, V., Schaffer, P.L., Snigireva, I., Snigirev, A., Dahle, A.K., Metall. Mater. Trans. A 42, 170 (2010).CrossRefGoogle Scholar
Bosak, A., Snigireva, I., Napolskii, K.S., Snigirev, A., Adv. Mater. 22, 3256 (2010).CrossRefGoogle Scholar
van Schooneveld, M.M., Hilhorst, J., Petukhov, A.V., Tyliszczak, T., Wang, J.A., Weckhuysen, B.M., de Groot, F.M.F., de Smit, E., Small 7, 804 (2011).CrossRefGoogle Scholar
Robinson, I., Harder, R., Nat. Mater. 8, 291 (2009).CrossRefGoogle Scholar
Thibault, P., Dierolf, M., Menzel, A., Bunk, O., David, C., Pfeiffer, F., Science 321, 379 (2008).CrossRefGoogle Scholar
Godard, P., Carbone, G., Allain, M., Mastropietro, F., Chen, G., Capello, L., Diaz, A., Metzger, T.H., Stangl, J., Chamard, V., Nat. Commun. 2, 568 (2011).CrossRefGoogle Scholar
Morgan, A.J., Prasciolu, M., Andrejczuk, A., Krzywinski, J., Meents, A., Pennicard, D., Graafsma, H., Barty, A., Bean, R.J., Barthelmess, M., Oberthuer, D., Yefanov, O., Aquila, A., Chapman, H.N., Bajt, S., Sci. Rep. 5, 9892 (2015).CrossRefGoogle Scholar
Eriksson, M., van der Veen, J., Quitmann, C., J. Synchrotron Radiat. 21, 837 (2014).CrossRefGoogle Scholar