Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-05T03:21:00.727Z Has data issue: false hasContentIssue false

Multilayer Optics for the Soft X-Ray and Extreme Ultraviolet

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

This article considers a particular class of optic microstructure — multilayers for soft x-ray (SXR, 100 eV[124 Å] to 3,000 eV[4.1 Å] and extreme ultraviolet (EUV, 15 eV[800 Å] to 100 eV[124 Å] optics. Multilayers are manmade vapor-deposited depth-periodic layered micro-stractures of high enough quality to be considered synthetic crystals. Layers of two materials, A and B, having significant differences in their scattering powers for x-rays (electron densities) and of uniform thicknesses ta and tb are combined to form a sample of uniform in-depth period d0 ( = ta + tb). These microstructures are of scientific and technological significance since the high angle of incidence SXR and EUV reflectivities of single film reflectors is ~10−4) and since only a limited number of naturally occurring or synthetic large lattice constant materials efficiently diffraction reflect long wavelength radiation (SXR and EUV).

Multilayer microstructure based SXR and EUV optics are direct analogues to standard quarterwave stacks applied at longer wavelengths with the requirement that absorption must be included. They are also analogous to atomic crystalline lattices in that one multilayer period is equivalent to one lattice plane. Thus, the multilayer structure forms a superlattice that diffraction reflects incident radiation. Multilayer diffraction may be modeled using x-ray scattering theory and obeys the refraction-corrected Bragg's law of crystal lattice diffraction. As will be discussed later, many factors determine the character of the multilayer response to an incident spectrum.

Type
Multilayer Materials
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Barbee, T.W. Jr., Opt. Eng. 25 (1986) p. 989.CrossRefGoogle Scholar
2.Barbee, T.W. Jr., in AIP Conf. Proc. 75, edited by Attwood, D.T. and Henke, B.L. (New York, 1986) p. 131.CrossRefGoogle Scholar
3.Spiller, E., in AIP Conf. Proc. 75, edited by Attwood, D.T. and Henke, B.L. (New York, 1981) p. 124.CrossRefGoogle Scholar
4.Born, M. and Wolf, E., Principles of Optics (Pergamon Press, New York, 1983).Google Scholar
5.Spiller, E., Appl. Opt. 16 (1976) p. 89.Google Scholar
6.Saxena, A.M. and Schoenborn, B.P., Acta Cryst. A33 (1977) p. 805.CrossRefGoogle Scholar
7.James, R.W., The Optical Principles of the Diffraction of X-Rays (Oxbow Press, Woodbridge, Conn., 1982).Google Scholar
8.Spiller, E., Proc. SPIE 563 (1985) p. 367.CrossRefGoogle Scholar
9.Henke, B.L., Lee, P., Tanaka, T.J., Shimabukuro, R.L., and Fujikawa, B.K., At. Data Nucl. Data Tables 27 (1982) p. 1.CrossRefGoogle Scholar
10.Underwood, J.H. and Barbee, T.W. Jr., in AIP Conf. Proc. 75, edited by Attwood, D.T. and Henke, B.L. (New York, 1981) p. 170.CrossRefGoogle Scholar
11.Rosenbluth, A.E., PhD Thesis, University of Rochester (1982).Google Scholar
12.Rosenbluth, A.E., Revue Phys. Appl. 23 (1988) p. 1599.CrossRefGoogle Scholar
13.Barbee, T.W. Jr., “Multilayers for X-Ray Optical Applications” in X-Ray Microscopy, edited by Schmahl, G. and Rudolph, D. (Springer-Verlag, Berlin, 1984) p. 144.CrossRefGoogle Scholar
14.Vinogradov, A.V. and Zeldovich, B.Y., Appl. Opt. 16 (1977) p. 89.CrossRefGoogle Scholar
15.Parratt, L.G., Phys. Rev. 95 (1954) p. 359.CrossRefGoogle Scholar
16.Rosenbluth, A.E. and Forsyth, J.M., A.I.P. Proc. 75 (1981) p. 131.Google Scholar
17.Spiller, E. and Rosenbluth, A.E., Opt. Eng. 25 (1986) p. 954.CrossRefGoogle Scholar
18.Spiller, E., Revue Phys. Appl. 23 (1988) p. 1687.CrossRefGoogle Scholar
19.Nevot, L., Pardo, B., and Corno, J., Revue Phys. Appl. 23 (1988) p. 1675.CrossRefGoogle Scholar
20.Azaroff, L.V., Kaplow, R., Kato, N., Weiss, R.J., Wilson, A.J.C., and Young, R.A., X-Ray Diffraction (McGraw Hill, New York, 1974) p. 101.Google Scholar
21.McWhan, D.B. in Synthetic Modulated Structures, edited by Chang, L.C. and Giessen, B.C. (Academic Press, New York, 1988) p. 45.Google Scholar
22.Sevenhaus, W., Gijs, M., Bruynseraede, Y., Homma, H., and Schuller, I.K., Phy. Rev. B 34 (1986) p. 5955.CrossRefGoogle Scholar
23.Clemens, B.M. and Gay, J.G., Phys. Rev. B 35 (1987) p. 9337.CrossRefGoogle Scholar
24.Chauvineau, J.P., Revue Phys. Appl. 23 (1988) p. 1645.CrossRefGoogle Scholar
25.Houdy, Ph., Revue Phys. Appl. 23 (1988) p. 1653.CrossRefGoogle Scholar
26.Arbaoui, M., Barchewitz, R., Sella, C., and Youn, K.B., “Absolute Reflectivity Measurements at 44.79 Å of Sputter Deposited Multilayer X-Ray Mirrors,” to be published in Appl. Opt.Google Scholar
27.Dodson, B.W., Phys. Rev. B 36 (1987) p. 1068.CrossRefGoogle Scholar
28.Ohmi, T., Ichikawa, T., Shibata, T., and Iwabuchi, H., Appl. Phys. Lett. 54 (1989) p. 523.CrossRefGoogle Scholar
29.Chambers, G.P. and Sartwell, B.D., “Growth Modes of Ag Deposited on Si(111) with Simultaneous Ion Bombardment,” to be published in Surface Science.Google Scholar
30.Spiller, E., Appl. Phys. Lett. 54 (1989) p. 2293.CrossRefGoogle Scholar
31.Underwood, J.H., Bruner, M.E., Hansch, B.M., Brown, W.A., and Acton, L.W., Science 238 (1987) p. 61.CrossRefGoogle Scholar
32.Walker, A.B.C. Jr., Barbee, T.W. Jr., Hoover, R.B., and Lindblom, J.F., Science 241 (1988) p. 1781.CrossRefGoogle Scholar
33.Walker, A.B.C. Jr., Lindblom, J.F., Hoover, R.B., and Barbee, T.W. Jr., “Narrow Band X-Ray EUV Images of the Sun with Normal Incidence Multilayer Optics,” presented at the 9th International Conference on Vacuum Ultraviolet Radiation Physics, July, 1989; to be published in Physica Scripta.Google Scholar
34.Barbee, T.W. Jr., Pianetta, P., Redaelli, R., Tatchyn, R., and Barbee, T.W. III, Appl. Phys. Lett. 50 (1987) p. 1841.CrossRefGoogle Scholar
35.Barbee, T.W. Jr., LLNL Energy and Technology Review, Report No. UCRL-5200-87-11.12 (Nov.-Dec., 1987) p. 44.Google Scholar
36.Smith, A., Riedel, C., Edwards, B., Savage, D., Lai, B., Ray-Chaudhuri, A., Cerrina, F., Lagally, M., Underwood, J., and Falco, C., SPIE 984 (1988) p. 31.Google Scholar
37.Barbee, T.W. Jr., Rev. Sci. Instr. 60 (1989) p. 1588.CrossRefGoogle Scholar
38.Rife, J.C., NRL Memorandum Report 6278 (1988).Google Scholar
39.Rife, J.C., Barbee, T.W. Jr., Hunter, W.R., and Cruddace, R.G., Appl. Opt. 28 (1989) p. 2984.CrossRefGoogle Scholar
40.Rife, J.C., Barbee, T.W. Jr., Hunter, W.R., and Cruddace, R.G., “Performance of a Tungsten/Carbon Multilayer-Coated, Blazed Grating from 80 to 1700 eV,” presented at the 9th International Conference on Vacuum Ultraviolet Physics, Hawaii, USA (July 1989); to be published in Physica Scripta.Google Scholar
41.Cruddace, R.G., Barbee, T.W. Jr., Rife, J.C., and Hunter, W.R., “Measurements of the Normal-Incidence X-Ray Reflectance of a Molybdenum-Silicon Multilayer Deposited on a 2000 1/mm Grating,” presented at the 9th International Conference on Vacuum Ultraviolet Radiation Physics, Hawaii, USA (July 1989), to be published in Physica Scripta.Google Scholar