Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-11T18:16:52.835Z Has data issue: false hasContentIssue false

MoSi2-Based High-Temperature Structural Silicides

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Structural materials that can withstand oxidizing and aggressive environments at temperatures above 1000°C constitute an enabling materials technology for a wide range of applications in the industrial, aerospace, and automotive arenas. A few of the industrial uses for such materials are furnace elements and components, power generation components, high-temperature heat exchangers, gas burners and igniters, and high-temperature filters. Aerospace applications include turbine aircraft engine hot-section components such as blades, vanes, combustors, nozzles, and seals. Automotive applications involve components such as turbocharger rotors, valves, glow plugs, and advanced turbine engine parts.

There is increasing interest in silicide-based compounds for high-temperature structural uses under oxidizing conditions in the range of 1200–1600°C. In this temperature range, for oxidation and strength reasons, the choice of materials is limited to the silicon-based structural ceramics such as Si3N4 and SiC, and the new class of “high-temperature structural silicides.” An extensive survey of progress in the area of high-temperature structural silicides has recently been published.

Type
Technical Features
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.High Temperature Structural Silicides, edited by Vasudevan, A.K. and Petrovic, J.J. (Elsevier, Amsterdam, 1992); Mater. Sci. Eng. A 155 (1992) p. 1.Google Scholar
2.Petrovic, J.J. and Vasudevan, A.K., in Intermetallic Matrix Composites II, edited by Miracle, D.B., Anton, D.L., and Graves, J.A. (Mater. Res. Soc. Symp. Proc. 273, Pittsburgh, PA, 1992) p. 229.Google Scholar
3.Meschter, P.J. and Schwartz, D.S., J. Met., November 1989, p. 52.Google Scholar
4.Petrovic, J.J., Honnell, R.E., and Vasudevan, A.K., in Intermetallic Matrix Composites, edited by Anton, D.L., Martin, P.L., Miracle, D.B., and McMeeking, R. (Mater. Res. Soc. Symp. Proc. 194, 1990) p. 123.Google Scholar
5.Thomas, O., Senateur, J.P., Madar, R., and Rosencher, E., Solid State Commun. 55 (1985) p. 629.CrossRefGoogle Scholar
6.Unal, O., Petrovic, J.J., Carter, D.H., and Mitchell, T.E., J. Am. Ceram. Soc. 73 (1990) p. 1752.CrossRefGoogle Scholar
7.Umakoshi, Y., Sakagami, T., Hirano, T., and Yamane, T., Acta Metall. Mater. 38 (1990) p. 909.CrossRefGoogle Scholar
8.Aikin, R.M. Jr., Scripta Metall. 26 (1992) p. 1025.CrossRefGoogle Scholar
9.Wade, R.K. and Petrovic, J.J., J. Am. Ceram. Soc. 75 (1992) p. 1682.CrossRefGoogle Scholar
10.Unal, O., Petrovic, J.J., and Mitchell, T.E., J. Mater. Res. 8 (1993) p. 626.CrossRefGoogle Scholar
11.Nakamura, M., Matsumoto, S., and Hirano, T., J. Mater. Sci. 25 (1990) p. 3309.CrossRefGoogle Scholar
12.Berztiss, D.A., Cerchiara, R.R., Gulbransen, E.A., Pettit, F.S., and Meier, G.H., Mater. Sci. Eng. A 155 (1992) p. 165.CrossRefGoogle Scholar
13.Fitzer, E. and Remmele, W., in Proceedings 5th International Conference on Composite Materials, ICCM-V, edited by Harrigan, W.C. Jr., Strife, J., and Dhingra, A.K. (AIME Publications, Warrendale, PA, 1985) p. 515.Google Scholar
14.Petrovic, J.J. and Honnell, R.E., Ceram. Eng. Sci. Proc. 11 (1990) p. 734.CrossRefGoogle Scholar
15.Boettinger, W.J., Perepezko, J.H., and Frankwicz, P.S., Mater. Sci. Eng. A 155 (1992) p. 33.CrossRefGoogle Scholar
16.Bose, S., Mater. Sci. Eng. A 155 (1992) p. 217.CrossRefGoogle Scholar
17.Maloy, S.A., Lewandowski, J.J., Heuer, A.H., and Petrovic, J.J., Mater. Sci. Eng. A 155 (1992) p. 159.CrossRefGoogle Scholar
18.Evans, A.G., J. Am. Ceram. Soc. 73 (1990) p. 187.CrossRefGoogle Scholar
19.Lu, T.C., Yang, J., Suo, Z., Evans, A.G., Hecht, R., and Mehrabian, R., Acta Metall. Mater. 39 (1991) p. 1883.CrossRefGoogle Scholar
20.Cook, J., Khan, A., Lee, E., and Mahapatra, R., Mater. Sci. Eng. A 155 (1992) p. 183.CrossRefGoogle Scholar
21.Lim, C.B., Yano, T., and Iseki, T., J. Mater. Sci. 24 (1989) p. 4144.CrossRefGoogle Scholar
22.Petrovic, J.J. and Honnell, R.E., J. Mater. Sci. Lett. 9 (1990) p. 1083.CrossRefGoogle Scholar
23.Mueller, A., Wang, G., Rapp, R.A., Courtright, E.L., and Kircher, T.A., Mater. Sci. Eng. A 155 (1992) p. 199.CrossRefGoogle Scholar
24.Moore, T.J., J. Am. Ceram. Soc. 68 (1985) p. C151.CrossRefGoogle Scholar
25.Kircher, T.A. and Courtright, E.L., Mater. Sci. Eng. A 155 (1992) p. 67.CrossRefGoogle Scholar