Skip to main content Accessibility help

Modeling of Defects in Silver Halides

  • C.R.A. Catlow


Modeling methods are now established as a major technique in defect physics and chemistry. Indeed, much of the contemporary understanding of complex defect processes derives from applying these techniques in conjunction with experimental methods.

The silver halides possess unusual defect properties and pose unique challenges to simulation studies. This article aims to outline the general features of defect simulations, and to review the status of their application to the defect properties of silver halides.

Technical aspects of the field have been detailed elsewhere, so this account is brief. An important feature of recent studies of the silver halides concerns developments in interatomic potentials, which will be considered, followed by a presentation and discussion of the calculated defect parameters.

The basis of the simulation techniques is the specification of an interatomic potential model for the system, i.e., an analytical or possibly a numerical description of the energy of the system as a function of atomic coordinates. For polar materials, the model must include the following terms: Coulomb and short-range energies, and ionic polarization.

To evaluate these terms, charges must be assigned to all atoms. In most studies reported to date, the fully ionic model has been used, i.e., integral charges have been assigned. The procedure has been followed in modeling the silver halides. Care must be taken in summing r-1 terms. Simple truncation procedures give unreliable results.



Hide All
1.Computer Simulation of Solids, Vol. 166, Lecture Notes in Physics, edited by Catlow, C.R.A. and Mackrodt, W.C., (Springer-Berlin, 1982).
2.Mackrodt, W.C., in Transport in Non-Stoichiometric Compounds, edited by Petot-Ervas, G., Matzke, Hj., and Monty, C. (North-Holland, 1984).
3.Catlow, C.R.A., Ann. Rev. Mater. Sci. 16 (1988) p. 517.
4.Agullo-Lopez, F., Catlow, C.R.A., and Townsend, P.D., Point Defects in Materials (Academic Press, 1988).
5.Norgett, M.J., UKAEA Report AERE-R7650 (1974).
6.Singh, R., Phys. Rep. 85 (1982) p. 259.
7.Mackrodt, W.C. and Stewart, R.F., J. Phys. C 10 (1977) p. 1431.
8.Mackrodt, W.C. and Stewart, R.F., J. Phys. C 12 (1979) p. 431.
9.Mackrodt, W.C., Stewart, R.F., Campbell, I.C., and Hillier, I.C., J. Physique C6 (1980) p. 64.
10.Catlow, C.R.A. and Norgett, M.J., UKAEA Report AERE-M2936 (1976).
11.Catlow, C.R.A., Cormack, A.N., and Theobald, F., Acta Crystallogr. Sect. B 40 (1984) p. 195.
12.Sanders, M.J. and Catlow, C.R.A., Proc. 6th Int. Zeolite Conference, edited by Olsen, D. and Bisio, A. (Butterworths, London, 1983) p. 131.
13.Mackrodt, W.C., in Advances in Ceramics, Vol. 10, edited by Kingery, W.D. (1984).
14.Norgett, M.J. and Fletcher, R., J. Phys. C 3 (1970) p. L190.
15.Catlow, C.R.A., James, R., Mackrodt, W.C., and Stewart, R.F., Phys. Rev. B 25 (1982) p. 1006.
16.Leslie, M., SERC Daresbury Report DL/SCI/TM31T (1982).
17.Catlow, C.R.A. and Fender, B.E.F., J. Phys. C 8 (1975) p. 3267.
18.Jackson, R.A., Murray, A.D., Harding, J.H., and Catlow, C.R.A., Philos. Mag. 53 (1986) p. 27.
19.Catlow, C.R.A., Proc. Roy. Soc. London, Ser. A 353 (1977) p. 533.
20.James, R., PhD Thesis, University of London (1979).
21.Catlow, C.R.A. and James, R., Proc. Roy. Soc. London, Ser. A 384 (1982) p. 157.
22.Gillan, M.J. and Jacobs, P.W.M., Phys. Rev. B 28 (1983) p. 759.
23.Harding, J.H., Physica B 131 (1985) p. 13.
24.Tasker, P.W., Philos. Mag. A 39 (1979) p. 119.
25.Tasker, P.W. and Duffy, D., Surface Sci. 137 (1984) p. 91.
26.Colbourn, E.A. and Mackrodt, W.C., Solid State Ionics 8 (1983) p. 221.
27.Colbourn, E.A., Mackrodt, W.C., and Tasker, P.W., in Proc. of 3rd NATO ARW on Transport in Non-Stoichiometric Compounds, edited by Simkovich, G. (Plenum Press, New York, 1985).
28.Colbourn, E.A., Mackrodt, W.C., and Tasker, P.W., Physica B 131 (1985) p. 41.
29.Sangster, M.J. and Dixon, M., Adv. Phys. 25 (1976) p. 247.
30.Gillan, M.J. and Dixon, M., J. Phys. C. 13 (1980) p. 1901.
31.Gillan, M.J. and Dixon, M., J. Phys. C. 13 (1980) p. 1919.
32.Jacobs, P.W.M. and Moscinski, J., Physica B 131 (1985) p. 175.
33.Fischer, K., Bilz, H., Hakerkorn, R., and Weber, W., Phys. Status Solidi B 54 (1972) p. 285.
34.Fischer, K., Phys. Status Solidi B 66 (1974) p. 295.
35.Catlow, C.R.A., Corish, J., and Jacobs, P.W.M., J. Phys. C 12 (1979) p. 3433.
36.Catlow, C.R.A., Corish, J., Harding, J.H., and Jacobs, P.W.M., Philos. Mag. A 55 (1987) p. 481.
37.Mayer, J.E., J. Chem. Phys. 1 (1933) p. 270.
38.Baetzold, al., J. Phys. Chem. Solids (in press).
39.Jacobs, P.W.M., Corish, J., and Catlow, C.R.A., J. Phys. C 13 (1980) p. 1977.
40.Aboagye, J.K. and Friauf, R.J., Phys. Rev. B 11 (1975) p. 1654.
41.Catlow, C.R.A., Corish, J., Jacobs, P.W.M., and Lidiard, A.B., J. Phys. C 14 (1981) p. L121.
42.Corish, J., J. Chem. Soc. Faraday Trans. (in press).
43.Devlin, B.A. and Corish, J., J. Phys. C 20 (1987) p. 705.

Modeling of Defects in Silver Halides

  • C.R.A. Catlow


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed