Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-17T04:49:16.077Z Has data issue: false hasContentIssue false

Model Systems for Metal-Ceramic Interface Studies

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Metal-ceramic composite applications range from electronic devices such as electronic packaging, thin-film technology in microwave circuitry, and magnetic storage media to catalyst supports, protective coatings, and high-temperature structural components. These applications rely heavily on the ability to engineer the mechanical and electronic properties of metal-ceramic interfaces. To understand fundamental aspects of these interfaces, a variety of experimental and theoretical studies on “model systems” have been performed, correlating macroscopic material behavior and microscopic characteristics. The results serve as a guide to more complex systems, with a closer relationship to technological applications.

Type
Nanoscale Characterization of Materials
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Rühle, M., Evans, A.G., Ashby, M.F., and Hirth, J.P., eds., Metal-Ceramic Interfaces, Proc. Int. Workshop (Pergamon Press, Oxford, 1990).Google Scholar
2.Howe, J.M., Int. Mater. Rev. 38 (1993) p. 233.CrossRefGoogle Scholar
3.Ernst, F., Mater. Sci. Eng. R14 (1995) p. 97.CrossRefGoogle Scholar
4.Gibbesch, B. and Elssner, G., Acta Metall. Mater. 40 (1992) p. S59.CrossRefGoogle Scholar
5.Vook, R.W., Int. Met. Rev. 27 (1982) p. 209.CrossRefGoogle Scholar
6.Structure and Properties of Interfaces in Ceramics, edited by Bonnell, D.A., Rühle, M., and Chowdhry, U. (Mater. Res. Soc. Symp. Proc. 357, Pittsburgh, 1995) p. 15.Google Scholar
7.Mader, W., Z. Metallk. 80 (1989) p. 139.Google Scholar
8.Backhaus-Ricoult, M., Hagege, S., Peyrot, A., and Moreau, P., J. Am. Ceram. Soc. 77 (1994) p. 423.CrossRefGoogle Scholar
9.Florjancic, M., Mader, W., Rühle, M., and Turwitt, M., J. Phys. (Paris) 46 (1985) p. C4129.Google Scholar
10.Finnis, M.W., Kruse, C., and Schönberger, U., Nanostruc. Mater. 6 (1995) p. 145.CrossRefGoogle Scholar
11.Finnis, M.W., J. Phys. Chem. 8 (1996) p. 5811.Google Scholar
12.Schönberger, U., Andersen, O.K., and Methfessel, M., Acta Metall. Mater. 40 (1992) p. S1.CrossRefGoogle Scholar
13.Glitzen, W.H., Alumina as a Ceramic Material, Special Publication No. 4 (American Ceramic Society, Columbus, OH, 1970).Google Scholar
14.Gota, S., Gautier-Soyer, M., Douillard, L., Duraud, J.P., and Le Fevre, P., Surf. Sci. 352–354 (1996) p. 1016.CrossRefGoogle Scholar
15.Gautier, M., Renaud, G., Pham Van, L., Villette, B., Pollak, M., Thromat, N., Jollet, F., and Duraud, J-P., J. Am. Ceram. Soc. 77 (1994) p. 323.CrossRefGoogle Scholar
16.Charig, J.M., Appl. Phys. Lett. 10 (1967) p. 139.CrossRefGoogle Scholar
17.Gillet, E., Legressus, C., and Gillet, M., J. Chim. Phys. 84 (1987) p. 167.CrossRefGoogle Scholar
18.Hsu, T. and Kim, Y., Ultramicroscopy 32 (1990) p. 103.CrossRefGoogle Scholar
19.Gautier, M., Duraud, J.P., and Pham Van, L., Surf. Sci. 249 (1991) p. L327.CrossRefGoogle Scholar
20.Gautier, M., Duraud, J.P., Pham Van, L., and Guittet, M.J., Surf. Sci. 250 (1991) p. 71.CrossRefGoogle Scholar
21.Ohuchi, F.S. and Kohyama, M., J. Am. Ceram. Soc. 74 (1991) p. 1163.CrossRefGoogle Scholar
22.Dehm, G., Rühle, M., Ding, G., and Raj, R., Philos. Mag. B 71 (1995) p. 1111.CrossRefGoogle Scholar
23.Scheu, C., Dehm, G., Müllejans, H., Brydson, R., and Rühle, M., Microsc. Microanal. Microstruc. 6 (1995) p. 19.CrossRefGoogle Scholar
24.Scheu, C., Dehm, G., Müllejans, H., and Rühle, M., Mater. Sci. Forum 207–209 (1996) p. 181.CrossRefGoogle Scholar
25.Trumble, K.P., Acta Metall. Mater. 40 (1992) p. S105.CrossRefGoogle Scholar
26.Rogers, K.A., Trumble, K.P., Dagleish, B.J., and Reimanis, I.E., J. Am. Ceram. Soc. 77 (1994) p. 2036.CrossRefGoogle Scholar
27.Misra, S.K., Chaklader, A.C.D., J. Am. Ceram. Soc. 77 (1963) p. 509.CrossRefGoogle Scholar
28.Mader, W. and Rühle, M., Acta Metall. Mater. 37 (1989) p. 853.CrossRefGoogle Scholar
29.Kuwabara, M., Spence, J.C.H., and Rühle, M., J. Mater. Res. 5 (1989) p. 972.CrossRefGoogle Scholar
30.Flynn, C.P., in Metal-Ceramic Interfaces Prod. Int. Workshop, edited by Rühle, M., Evans, A.G., Ashby, M.F., and Hirth, J.P. (Pergamon Press, Oxford, 1990) p. 168.CrossRefGoogle Scholar
31.Mayer, J., Flynn, C.P., and Rühle, M., Ultramicroscopy 33 (1990) p. 51.CrossRefGoogle Scholar
32.Vitek, V., Gutekunst, G., Mayer, J., and Rühle, M., Philos. Mag. A71 (1995) p. 1219.CrossRefGoogle Scholar
33.Gutekunst, G., Mayer, J., Vitek, V., and Rühle, M., Philos. Mag., in press.Google Scholar
34.Gutekunst, G., Mayer, J., and Rühle, M., Philos. Mag., in press.Google Scholar
35.Mayer, J., Gutekunst, G., Möbus, G., Dura, J., Flynn, C.P., and Rühle, M., Acta Metall Mater. 40 (1992) p. S217.CrossRefGoogle Scholar
36.Knauss, D. and Mader, W., Ultramicroscopy 37 (1991) p. 247.CrossRefGoogle Scholar
37.Wagner, T., Lorenz, M., and Rühle, M., J. Mater. Res. 11 (1996) p. 1255.CrossRefGoogle Scholar
38.Wagner, T., J. Mater. Res. 11 (1996) p. 1255. in press.CrossRefGoogle Scholar
39.Bruley, J., Brydson, R., Müllejans, H., Mayer, J., Gutekunst, G., Mader, W., Knauss, D., and Rühle, M., J. Mater. Res. 9 (1994) p. 2574.CrossRefGoogle Scholar
40.Kruse, C., Finnis, M.W., Lin, J.S., Payne, M.C., Milman, V.Y., Devita, A., and Gillan, M.J., Philos. Lett. 73 (1996) p. 377.CrossRefGoogle Scholar
41.Grätzel, M., MRS Bulletin XVIII (10) (1993) p. 61.CrossRefGoogle Scholar
42.Henrich, V.E. and Kurtz, R.L., Phys. Rev. B 23 (1981) p. 6280.CrossRefGoogle Scholar
43.Göpel, W., Surf. Sci. 139 (1984) p. 333.CrossRefGoogle Scholar
44.Kasowski, R.V. and Tait, R.H., Phys. Rev. B 20 (1979) p. 5186.CrossRefGoogle Scholar
45.Rohrer, G.S., Henrich, V.E., and Bonnell, D.A., Surf. Sci. 278 (1992) p. 146.CrossRefGoogle Scholar
46.Marien, J., Wagner, T., and Rühle, M., in Thin Films — Structure and Morphology, edited by Cammarata, R.C., Chason, E.H., Einstein, T.L., and Williams, E.D. (Mater. Res. Soc. Symp. Proc. 441, Pittsburgh, 1997) p. 63.Google Scholar
47.Marien, J., PhD dissertation, Universität Stuttgart, 1997.Google Scholar
48.Lu, P. and Cosandey, F., I. Sci. 2 (1994) p. 169.Google Scholar
49.Diebold, U., Pan, J-M., and Madey, T.E., Phys. Rev. B 47 (1993) p. 3868.CrossRefGoogle Scholar
50.Diebold, U., Pan, J-M., and Madey, T.E., Surf. Sci. 287/288 (1993) p. 896.CrossRefGoogle Scholar
51.Carroll, D.L., Wagner, M., Rühle, M., and Bonnell, D.A., J. Mater. Res. in press.Google Scholar
52.Murray, P.W., Condon, N.G., and Thornton, G., Phys. Rev. B 51 (1995) p. 10989.CrossRefGoogle Scholar
53.Fischer, S., Munz, A.W., Schierbaum, K-D., and Göpel, W., Surf. Sci. 337 (1995) p. 27 and references therein.Google Scholar
54.Wagner, M., Bonnell, D.A., and Rühle, M. (unpublished manuscript).Google Scholar
55.Carroll, D.L., Wagner, M., Rühle, M., and Bonnell, D.A., Phys. Rev. B in press.Google Scholar