Skip to main content Accessibility help
×
Home

Microstructured Silica as an Optical-Fiber Material

  • J.C. Knight, T.A. Birks, B.J. Mangan and P.St.J. Russell

Extract

Conventional optical fibers are fabricated by creating a preform from two different glasses and drawing the preform down at an elevated temperature to form a fiber. A waveguide core is created in the preform by embedding a glass with a higher refractive index within a lower-index “cladding” material. Over the last few years, researchers at several laboratories have demonstrated very different forms of optical-fiber waveguides by using a drawing process to produce two-dimensionally microstructured materials in the form of fine “photoniccrystal fibers” (PCFs). One such waveguide is represented schematically in Figure 1. It consists of a silica fiber with a regular pattern of tiny airholes that run down the entire length. The optical properties of the microstructured silica cladding material enable the formation of guided waves in the pure silica core.

Copyright

References

Hide All
1.Kaiser, P. and Astle, H.W., Bell Sys. Tech. J. 53 (1974) p. 1021.
2.Tonucci, R.J., Justus, B.L., Campillo, A.J., and Ford, C.E., Science 258 (1992) p. 783.
3.Inoue, K., Wada, M., Sakoda, K., Yamanaka, A., Hayashi, M., and Haus, J.W., Jpn. J. Appl. Phys., Part 2: Lett. 33 (1994) p. L1463.
4.Birks, T.A., Knight, J.C., and Russell, P.St.J., Opt. Lett. 22 (1997) p. 961.
5.Russell, P.St.J., Birks, T.A., and Lloyd-Lucas, F.D., in Confined Electrons and Photons, edited by Burstein, E. and Weisbuch, C. (Plenum Press, New York, 1995) p. 585.
6.Cregan, R.F., Mangan, B.J., Knight, J.C., Birks, T.A., P.SRussell, t.J., Allen, D., and Roberts, P.J., Science 285 (1999) p. 1537.
7.Birks, T.A., Roberts, P.J., Russell, P.St.J., Atkin, D.M., and Shepherd, T.J., Electron. Lett. 31 (1995) p. 1941.
8.Knight, J.C., Birks, T.A., Russell, P.St.J., and Atkin, D.M., Opt. Lett. 21 (1996) p. 1547; errata 22 (1997) p. 484.
9.Ortigosa-Blanch, A., Knight, J.C., Wadsworth, W.J., Mangan, B.J., Birks, T.A., and Russell, P.St.J., Opt. Lett. 25 (2000) p. 1325.
10.Marcatili, E.A.J., Bell Sys. Tech. J. 43 (1964) p. 1783.
11.Knight, J.C., Birks, T.A., Ortigosa-Blanch, A., Wadsworth, W.J., and Russell, P.St.J., IEEE Photon. Technol. Lett. 12 (2000) p. 807.
12.Wadsworth, W.J., Knight, J.C., Ortigosa-Blanch, A., Arriaga, J., Silvestre, E., and Russell, P.St.J., Electron. Lett. 36 (2000) p. 53.
13.Ranka, J.K., Windeler, R.S., and Stenz, A.J., Opt. Lett. 25 (2000) p. 25.
14.Liu, X., Xu, C., Knox, W.H., Chandalia, J.K., Eggleton, B.J., Kosinski, S.G., and Windeler, R.S., Opt. Lett. 26 (2001) p. 358.
15.Birks, T.A., Mogilevtsev, D., Knight, J.C., and Russell, P.St.J., IEEE Photon. Technol. Lett. 11 (1999) p. 674.
16.Ferrando, A., Silvestre, E., Miret, J.J., and Andres, P., Opt. Lett. 25 (2000) p. 790.

Microstructured Silica as an Optical-Fiber Material

  • J.C. Knight, T.A. Birks, B.J. Mangan and P.St.J. Russell

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed