Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-27T04:20:48.442Z Has data issue: false hasContentIssue false

Materials Challenges in Photovoltaic Energy Generation in Space

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Virtually all spacecraft employ photovoltaic energy conversion for continuous power generation. Compared to their counterpart on Earth, photovoltaic modules in the space environment face a unique set of performance requirements. Among the most demanding ones are the need to have the highest possible specific power output with regard to mass and surface area while showing as little degradation as possible under intense particle and ultraviolet radiation during lifetimes of up to 15 years. In addition, the thermomechanical stresses induced by temperature fluctuations up to 200°C are not to result in additional electrical degradation. This article briefly outlines the state-of-the-art design solution to meet these requirements before it focuses on current materials issues in two core areas: On the solar cell itself, which requires new materials systems and cell concepts to surpass the efficiency of the lattice-matched triple junction solar cell technology, and on materials issues concerning the encapsulation of solar cells for space use. Closely linked to these materials challenges are testing-related issues that arise in verifying the expected material behavior during extended periods in the space environment. These are discussed in conjunction with the materials challenges.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Perlin, J., From Space to Earth: the Story of Solar Electricity (Aatec Publications, MI, 1999).Google Scholar
2. Strobl, G., Uebele, P., Kern, R., Roy, K., Flores, C., Campesato, R., Signorini, C., Bogus, K., in Proc. 24th IEEE Photovoltaic Specialists Conference (1994), p. 2124.Google Scholar
3. Fatemi, N., Sharma, S., Buitrago, O., Crisman, J., Sharps, P., Blok, R., Kroon, M., Jalink, C., Harris, R., Stella, P., Distefano, S., in Proc. 31st IEEE Photovoltaic Specialists Conference (2005), p. 618.Google Scholar
4. Suzuki, A., Kaneiwa, M., Saga, T., Matsuda, S., IEEE Trans. Electron Devices 46, 2126 (1999).Google Scholar
5. Strobl, G., Uebele, P.G., Tentscher, K.H., Kern, R., Rasch, K.D., Bogus, K.P., Robben, T., LaRoche, G., in Proc. 28th IEEE Photovoltaic Specialists Conference (2000), p. 1289.Google Scholar
6. Solar Constant and Air Mass Zero Solar Spectral Irradiance Tables (American Society for Testing and Materials, Philadelphia, 1992), Vol. ASTME 490–73a.Google Scholar
7. Yamaguchi, M., Luque, A., IEEE Trans. Electron Devices 46, 2139 (1999).Google Scholar
8. Olson, J.M., Kurtz, S.R., Kibbler, A.E., Faine, P., Appl. Phys. Lett. 56, 623 (1990).Google Scholar
9. Karam, N.H., King, R.R., Cavicchi, B.T., Krut, D.D., Ermer, J.H., Haddad, M., Cai, L., Joslin, D.E., Takahashi, M., Eldredge, J.W., Nishikawa, W.T., Lillington, D.R., Keyes, B.M., Ahrenkiel, R.K., IEEE Trans. Electron Devices 46, 2116 (1999).CrossRefGoogle Scholar
10. Timo, G., Flores, C., Campesato, R., Cryst. Res. Technol. 40, 1043 (2005).Google Scholar
11. Fetzer, C., Jun, B., Edmondson, K., Khemthong, S., Rouhani, K., Cravens, R., Bardfield, R., Gillanders, M., in Proc. 33rd IEEE Photovoltaic Specialists Conference, 11–16 May 2008, pp. 14.Google Scholar
12. Yamaguchi, M., Takamoto, T., Araki, K., Ekins-Daukes, N., Sol. Energy 79, 78 (2005).CrossRefGoogle Scholar
13. King, R.R., Fetzer, C.M., Colter, P.C., Edmondson, K.M., Ermer, J.H., Cotal, H.L., Yoon, H., Stavrides, A.P., Kinsey, G., Krut, D.D., Karam, N.H., in Proc. 29th IEEE Photovoltaic Specialists Conference (2002), p. 776.Google Scholar
14. Dharmarasu, N., Yamaguchi, M., Khan, A., Yamada, T., Tanabe, T., Takagishi, S., Takamoto, T., Oshima, T., Itoh, H., Imaizumi, M., Matsuda, S., Appl. Phys. Lett. 79, 2399 (2001).Google Scholar
15. Sharps, P.R., Cornfeld, A., Stan, M., Korostyshevsky, A., Ley, V., Cho, B., Varghese, T., Diaz, J., Aiken, D., in Proc. 33rd IEEE Photovoltaic Specialists Conference, 11–16 May 2008, pp. 16.Google Scholar
16. Kurtz, S.R., Allerman, A.A., Jones, E.D., Gee, J.M., Banas, J.J., Hammons, B.E., Appl. Phys. Lett. 74, 729 (1999).Google Scholar
17. Khan, A., Kurtz, S.R., Prasad, S., Johnston, S.W., Gou, J., Appl. Phys. Lett. 90, 243509 (2007).Google Scholar
18. King, R.R., Fetzer, C.M., Law, D.C., Edmondson, K.M., Yoo, H., Kinsey, G.S., Krut, D.D., Ermer, J.H., Hebert, P., Cavicchi, B.T., Karam, N.H., in Proc. 4th World Conference on Photovoltaic Energy Conversion (2006), p. 1757.Google Scholar
19. Dimroth, F., Baur, C., Bett, A.W., Meusel, M., Strobl, G., in Proc. 31st IEEE Photovoltaic Specialists Conference (2005), p. 525.Google Scholar
20. Dimroth, F., Schubert, U., Bett, A.W., IEEE Electron Device Lett. 21, 209 (2000).Google Scholar
21. King, R.R., Law, D.C., Edmondson, K.M., Fetzer, C.M., Kinsey, G.S., Yoon, H., Sherif, R.A., Karam, N.H., Appl. Phys. Lett. 90, 183516 (2007).CrossRefGoogle Scholar
22. Guter, W., Schöne, J., Philipps, S.P., Steiner, M., Siefer, G., Wekkeli, A., Welser, E., Oliva, E., Bett, A.W., Dimroth, F., Appl. Phys. Lett. 94, 223504 (2009).Google Scholar
23. Stan, M., Aiken, D., Cho, B., Cornfeld, A., Diaz, J., Ley, V., Korostyshevsky, A., Patel, P., Sharps, P., Varghese, T., J. Cryst. Growth 310, 5204 (2008).Google Scholar
24. Geisz, J.F., Kurtz, S., Wanlass, M.W., Ward, J.S., Duda, A., Friedman, D.J., Olson, J.M., McMahon, W.E., Moriarty, T.E., Kiehl, J.T., Appl. Phys. Lett. 91, 023502 (2007).Google Scholar
25. Stan, M., Aiken, D., Cho, B., Cornfeld, A., Diaz, J., Korostyshevsky, A., Ley, V., Patel, P., Sharps, P., Varghese, T., in Proc. 33rd IEEE Photovoltaic Specialists Conference, 11–16 May 2008, pp. 16.Google Scholar
26. Weizer, V.G., Broder, J.D., J. Appl. Phys. 53, 5926 (1982).Google Scholar
27. Isenberg, J., Warta, W., J. Appl. Phys. 95, 5200 (2004).Google Scholar
28. Abbott, M.D., Cotter, J.E., Chen, F.W., Trupke, T., Bardos, R.A., Fisher, K.C., J. Appl. Phys. 100, 114514 (2006).Google Scholar
29. Zimmermann, C.G., IEEE Electron Device Lett. 30, 825 (2009).Google Scholar
30. Vette, J.I., The AE-8 Trapped Electron Model Environment (NASA Publication NSSDC 91–24, 1991).Google Scholar
31. Sawyer, D.M., Vette, J.I., AP-8 Trapped Proton Environment for Solar Maximum and Solar Minimum (NASA Publication NSSCE 76–06, 1976).Google Scholar
32. Space Environment Information System (SPENVIS) website: www.spenvis.oma.beGoogle Scholar
33. Feynman, J., Spitale, G., Wang, J., Gabriel, S., J. Geophys. Res. 98, 281 (1993).Google Scholar
34. Anspaugh, B.E., GaAs Solar cell Radiation Handbook (JPL Publication 96–9, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 1996).Google Scholar
35. Messenger, S.R., Summers, G.P., Burke, E.A., Walters, R.J., Xapsos, M.A., Prog. Photovoltaics Res. Appl. 9, 103 (2001).Google Scholar
36. Summers, G.P., Walters, R.J., Xapsos, M.A., Burke, E.A., Messenger, S.R., Shapiro, P., Statler, R.L., in Proc. 24th IEEE Photovoltaic Specialists Conference (1994), p. 2068.Google Scholar
37. Messenger, S.R., Burke, E.A., Walters, R.J., Warner, J.H., Summers, G.P., Morton, T.L., IEEE Trans. Nucl. Sci. 53, 3771 (2006).Google Scholar
38. Summers, G.P., Messenger, S.R., Burke, E.A., Xapsos, M.A., Walters, R.J., Appl. Phys. Lett. 71, 832 (1997).Google Scholar
39. Messenger, S.R., Burke, E.A., Summers, G.P., Walters, R.J., IEEE Trans. Nucl. Sci. 49, 2690 (2002).CrossRefGoogle Scholar
40. Statler, R.L., Curtin, D.J., IEEE Trans. Electron Devices 18, 412 (1971).Google Scholar
41. Russell, J., Jones, G., in Proceedings of 1st International Energy Conversion Engineering Conference (IECEC) (AIAA-2003–6036, Portsmouth, VA, 2003).Google Scholar
42. Crabb, R.L., in Proc. 9th IEEE Photovoltaic Specialists Conference (1972), p. 185.Google Scholar
43. Haynes, G.A., Effect of Radiation on Cerium-Doped Solar-Cell Cover Glass, NASA TN D-6024 (1970).Google Scholar
44. Kreidl, N.J., Hensler, J.R., J. Opt. Soc. Am. 47, 73 (1957).Google Scholar
45. Zimmermann, C.G., J. Appl. Phys. 103, 083547 (2008).CrossRefGoogle Scholar
46. Rabek, J.F., Polymer Photodegradation (Chapman & Hall, London, 1985).Google Scholar
47. Zimmermann, C.G., Appl. Phys. Lett. 92, 241110 (2008).Google Scholar
48. O'Neill, M.J., McDanal, A.J., Piszczor, M.F., George, P.J., Edwards, D.L., Brandhorst, H.W., Eskenazi, M.I., Botke, M.M., Jaster, P.M., IEEE Aerosp. Electron. Syst. Mag. 18, 3 (2003).Google Scholar
49. Dever, J.A., Banks, B.A., Yan, L., J. Spacecr. Rockets 43, 386 (2006).Google Scholar
50. Zimmermann, C.G., J. Appl. Phys. 100, 023714 (2006).Google Scholar
51. Zimmermann, C.G., IEEE Trans. Device Mater. Reliab. 6, 486 (2006).Google Scholar
52. Yamaguchi, H., Takahashi, N., Kodama, T., Izichi, R., Washio, H., Nakamura, K., Takamoto, T., Imaizumi, M., Takahashi, M., Shimazaki, K., Koichi, K., in Proc. 33rd IEEE Photovoltaic Specialists Conference, 11–16 May 2008, pp. 13.Google Scholar
53. Brandhorst, H., Isaacs-Smith, T., Wells, B., Lichtenhan, J.D., Fu, B.X., in Proc. 4th World Conference on Photovoltaic Energy Conversion (2006), p. 1887.Google Scholar
54. Strobl, G., Dietrich, R., Hilgarth, J., Köstler, W., Kern, R., Nell, M., Rothenbacher, S., Bett, A.W., Dimroth, F., Meusel, M., Campesato, R., Flores, C., Timo, G., Smekens, G., Vanbegin, J., Raskin, G., Geens, W., LaRoche, G., Hey, G., Signorini, C., Taylor, S. in Proc. 3rd World Conference on Photovoltaic Energy Conversion (2003), p. 658.Google Scholar