Skip to main content Accessibility help

Low thermal conductivity oxides

  • Wei Pan (a1), Simon R. Phillpot (a2), Chunlei Wan (a3), Aleksandr Chernatynskiy (a4) and Zhixue Qu (a5)...


Oxides hold great promise as new and improved materials for thermal-barrier coating applications. The rich variety of structures and compositions of the materials in this class, and the ease with which they can be doped, allow the exploration of various mechanisms for lowering thermal conductivity. In this article, we review recent progress in identifying specific oxides with low thermal conductivity from both theoretical and experimental perspectives. We explore the mechanisms of lowering thermal conductivity, such as introducing structural/chemical disorder, increasing material density, increasing the number of atoms in the primitive cell, and exploiting the structural anisotropy. We conclude that further systematic exploration of oxide crystal structures and chemistries are likely to result in even further improved thermal-barrier coatings.



Hide All
1.Siegel, R., Spuckler, C.M., Mater. Sci. Eng., A 245, 150 (1998).
2.Stecura, S., “Optimization of the NiCrAI-Y/ZrO2-Y2O3 Thermal Barrier System” (NASA Tech. memo, Cleveland, 1985).
3.Callaway, J., von Baeyer, H.C., Phys. Rev. 120 (4), 1149 (1960).
4.Schelling, P.K., Phillpot, S.R., J. Am. Ceram. Soc. 84 (12), 2997 (2001).
5.Watanabe, T., Srivilliputhur, S.G., Schelling, P.K., Tulenko, J.S., Sinnott, S.B., Phillpot, S.R., J. Am. Ceram. Soc. 92 (4), 850 (2009).
6.Allen, P.B., Feldman, J.L., Bickham, S.R., Philos. Mag. B 79 (11–12), 1715 (1999).
7.Lughi, V., Clarke, D.R., Surf. Coat. Technol. 200 (5–6), 1287 (2005).
8.Feng, J., Ren, X.R., Wang, X., Zhou, R., Pan, W., Scripta Mater. 66 (1), 41 (2012).
9.Rahaman, M.N., Gross, J.R., Dutton, R.E., Wang, H., Acta Mater. 54 (6), 1615 (2006).
10.Levi, C.G., Curr. Opin. Solid State Mater. Sci. 8 (1), 77 (2004).
11.Raghavan, S., Wang, H., Dinwiddie, R.B., Porter, W.D., Vaβen, R., Stöver, D., Mayo, M.J., J. Am. Ceram. Soc. 87 (3), 431 (2004).
12.Raghavan, S., Wang, H., Porter, W.D., Dinwiddie, R.B., Mayo, M.J., Acta Mater. 49 (1), 169 (2001).
13.Shen, Y., Leckie, R.M., Levi, C.G., Clarke, D.R., Acta Mater. 58 (13), 4424 (2010).
14.Song, X.W., Xie, M., Mu, R., Zhou, F., Jia, G., An, S., Acta Mater. 59 (10), 3895 (2011).
15.Jarligo, M.O., Mack, D.E., Mauer, G., Vaβen, R., Stöver, D., J. Therm. Spray Technol. 19 (1–2), 303 (2010).
16.Vaβen, R., Jarligo, M.O., Steinke, T., Mack, D.E., Stöver, D., Surf. Coat. Technol. 205 (4), 938 (2010).
17.Zhu, D.M., Miller, R.A., Int. J. Appl. Ceram. Technol. 1 (1), 86 (2004).
18.Vaβen, R., Cao, X.Q., Tietz, F., Basu, D., Stöver, D., J. Am. Ceram. Soc. 83 (8), 2023 (2000).
19.Wuensch, B.J., Eberman, K.W., J. Miner. 52, 19 (2000).
20.Schelling, P.K., Phillpot, S.R., Grimes, R.W., Philos. Mag. Lett. 84 (2), 127 (2004).
21.Qu, Z., Wan, C., Pan, W., Acta Mater. 60 (6–7), 2939 (2012).
22.Wu, J., Wei, X.Z., Padture, N.P., Klemens, P.G., Gell, M., Garcia, E., Miranzo, P., Osendi, M.I., J. Am. Ceram. Soc. 85 (12), 3031 (2002).
23.Winter, M.R., Clarke, D.R., J. Am. Ceram. Soc. 90 (2), 533 (2007).
24.Xu, Q., Pan, W., Wang, J., Wan, C., Qi, L., Miao, H., Mori, K., Torigoe, T., J. Am. Ceram. Soc. 89 (1), 340 (2006).
25.Lehmann, H., Pitzer, D., Pracht, G., Vaβen, R., Stöver, D., J. Am. Ceram. Soc. 86 (8), 1338 (2003).
26.Wan, C.L., Qu, Z.X., Du, A., Pan, W., J. Am. Ceram. Soc. 94 (2), 592 (2011).
27.Wan, C.L., Zhang, W., Wang, Y., Qu, Z.X., Du, A., Wu, R., Pan, W., Acta Mater. 58 (18), 6166 (2010).
28.Mitchell, R.H., Perovskites: Modern and Ancient (Almaz Press, Thunder Bay, 2002).
29.Ma, W., Mack, D.E., Vaβen, R., Stöver, D., J. Am. Ceram. Soc. 91 (8), 2630 (2008).
30.Ma, W., Jarligo, M.O., Pitzer, D., Malzbender, J., Vaβen, R., Stöver, D., J. Therm. Spray Technol. 17 (5–6), 831 (2008).
31.Jarligo, M.O., Mack, D.E., Vaβen, R., Stöver, D., J. Therm. Spray Technol. 18 (2), 187 (2009).
32.Wan, C., Qu, Z., He, Y., Luan, D., Pan, W., Phys. Rev. Lett. 101 (8), 085901 (2008).
33.Wan, C.L., Sparks, T.D., Pan, W., Clarke, D.R., David, R., J. Am. Ceram. Soc. 93 (5), 1457 (2010).
34.Chernatynskiy, A., Grimes, R.W., Zurbuchen, M.A., Clarke, D.R., Phillpot, S.R., Appl. Phys. Lett. 95 (16) (2009).
35.Shen, Y., Clarke, D.R., Fuierer, P.A., Appl. Phys. Lett. 93 (10) (2008).
36.Guo, H., Zhang, H., Ma, G., Gong, S., Surf. Coat. Technol. 204 (5), 691 (2009).
37.Cao, X.Q., Vaβen, R., Stöver, D., J. Eur. Ceram. Soc. 24 (1), 1 (2004).
38.Du, A.B., Wan, C.L., Qu, Z., Pan, W., J. Am. Ceram. Soc. 92 (11), 2687 (2009).
39.Du, A.B., Wan, C.L., Qu, Z., Wu, R., Pan, W., J. Am. Ceram. Soc. 93 (9), 2822 (2010).
40.Qu, Z.X., Sparks, T.D., Pan, W., Clarke, D.R., Acta Mater. 59 (10), 3841 (2011).
41.Vaβen, R., Kerkhof, G., Stöver, D., Mater. Sci. Eng., A 303 (1–2), 100 (2001).
42.Sodeoka, S., Suzuki, M., Ueno, K.. Sakuramoto, H., Shibata, T., Ando, M., J. Therm. Spray Technol. 6 (3), 361 (1997).
43.Cao, X.Q., Vaβen, R., Fischer, W., Tietz, F., Jungen, W., Stöve, D., Adv. Mater. 15 (17), 1438 (2003).
44.Qu, Z.X., Wan, C.L., Pan, W., Chem. Mater. 19 (20), 4913 (2007).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed