Skip to main content Accessibility help

Localized fields, global impact: Industrial applications of resonant plasmonic materials

  • J.A. Dionne (a1), A. Baldi (a2), B. Baum (a3), C.-S. Ho (a4), V. Janković (a5), G.V. Naik (a6), T. Narayan (a7), J.A. Scholl (a8) and Y. Zhao (a9)...


From the photoinduced transport of energy that accompanies photosynthesis to the transcontinental transmission of optical data that enable the Internet, our world relies and thrives on optical signals. To highlight the importance of optics to society, the United Nations designated 2015 as “The International Year of Light and Light-based Technologies.” Although conventional optical technologies are limited by diffraction, plasmons—collective oscillations of free electrons in a conductor—allow optical signals to be tailored with nanoscale precision. Following decades of fundamental research, several plasmonic technologies have now emerged on the market, and numerous industrial breakthroughs are imminent. This article highlights recent industrially relevant advances in plasmonics, including plasmonic materials and devices for energy; for medical sensing, imaging, and therapeutics; and for information technology. Some of the most exciting industrial applications include solar-driven water purifiers, cell phone Raman spectrometers, high-density holographic displays, photothermal cancer therapeutics, and nanophotonic integrated circuits. We describe the fundamental scientific concepts behind these and related technologies, as well as the successes and challenges associated with technology transfer.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Localized fields, global impact: Industrial applications of resonant plasmonic materials
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Localized fields, global impact: Industrial applications of resonant plasmonic materials
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Localized fields, global impact: Industrial applications of resonant plasmonic materials
      Available formats



Hide All
1. Maier, S.A., Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
2. Willets, K.A., Van Duyne, R.P., Annu. Rev. Phys. Chem. 58 (1), 267 (2007).
3. Ozbay, E., Science 311, 1 (2006).
4. Lal, S., Link, S., Halas, N.J., Nat. Photonics 1, 641 (2007).
5. Pelton, M., Aizpurua, J., Bryant, G., Laser Photon. Rev. 2 (3), 136 (2008).
6. Gramotnev, D.K., Bozhevolnyi, S.I., Nat. Photonics 4 (2), 83 (2010).
7. Schuller, J.A., Barnard, E.S., Cai, W., Jun, Y.C., White, J.S., Brongersma, M.L., Nat. Mater. 9 (3), 193 (2010).
8. Brongersma, M.L., Halas, N.J., Nordlander, P., Nat. Nanotechnol. 10 (1), 25 (2015).
9. Govorov, A.O., Zhang, H., Gun’ko, Y.K., J. Phys. Chem. C 117 (32), 16616 (2013).
10. Zhang, H., Govorov, A.O., J. Phys. Chem. C 118 (14), 7606 (2014).
11. Manjavacas, A., Liu, J.C., Kulkarni, V., Nordlander, P., ACS Nano 8 (8), 7630 (2014).
12. Armor, J., “What is Catalysis or Catalysts, So What?” (2008), (accessed July 2015).
13. Qiu, J., Wei, W.D., J. Phys. Chem. C 118 (36), 20735 (2014).
14. Christopher, P., Xin, H., Marimuthu, A., Linic, S., Nat. Mater. 11, 1044 (2012).
15. Christopher, P., Xin, H., Linic, S., Nat. Chem. 3 (6), 467 (2011).
16. Mukherjee, S., Libisch, F., Large, N., Neumann, O., Brown, L.V., Cheng, J., Lassiter, J.B., Carter, E.A., Nordlander, P., Halas, N.J., Nano Lett. 13 (1), 240 (2013).
17. Marimuthu, A., Zhang, J., Linic, S., Science 339, 1590 (2013).
18. Tian, Y., Tatsuma, T., Chem. Commun. 16 (16), 1810 (2004).
19. Tian, Y., Tatsuma, T., J. Am. Chem. Soc. 127 (20), 7632 (2005).
20. Mubeen, S., Lee, J., Singh, N., Krämer, S., Stucky, G.D., Moskovits, M., Nat. Nanotechnol. 8 (4), 247 (2013).
21. Thimsen, E., Formal, F.L., Grätzel, M., Warren, S.C., Nano Lett. 11 (1), 35 (2011).
22. Thomann, I., Pinaud, B.A., Chen, Z., Clemens, B.M., Jaramillo, T.F., Brongersma, M.L., Nano Lett. 11 (8), 3440 (2011).
23. Brown, M.D., Suteewong, T., Santosh Kumar, R.S., D’Innocenzo, V., Petrozza, A., Lee, M.M., Wiesner, U., Snaith, H.J., Nano Lett. 11 (2), 438 (2011).
24. Ferry, V.E., Verschuuren, M.A., Li, H.B.T., Verhagen, E., Walters, R.J., Schropp, R.E.I., Atwater, H.A., Polman, A., Opt. Express 18, A237 (2010).
25. Ingram, D.B., Linic, S., J. Am. Chem. Soc. 133 (14), 5202 (2011).
26. Neumann, O., Urban, A.S., Day, J., Lal, S., Nordlander, P., Halas, N.J., ACS Nano 7 (1), 42 (2013).
27. Neumann, O., Feronti, C., Neumann, A.D., Dong, A., Schell, K., Lu, B., Kim, E., Quinn, M., Thompson, S., Grady, N., Nordlander, P., Oden, M., Halas, N.J., Proc. Natl. Acad. Sci. U.S.A. 110 (29), 11677 (2013).
28. Ferry, V.E., Munday, J.N., Atwater, H.A., Adv. Mater. 22 (43), 4794 (2010).
29. Pala, R.A., White, J., Barnard, E., Liu, J., Brongersma, M.L., Adv. Mater. 21 (34), 3504 (2009).
30. Gan, Q., Bartoli, F.J., Kafafi, Z.H., Adv. Mater. 25 (17), 2385 (2013).
31. Zhang, Y., Stokes, N., Jia, B., Fan, S., Gu, M., Sci. Rep. 4, 4939 (2014).
32. Garnett, E.C., Cai, W., Cha, J.J., Mahmood, F., Connor, S.T., Christoforo, M.G., Cui, Y., McGehee, M.D., Brongersma, M.L., Nat. Mater. 11 (3), 241 (2012).
33. Baffou, G., Quidant, R., Laser Photonics Rev. 7, 171 (2013).
34. Pissuwan, D., Niidome, T., Cortie, M.B., J. Control. Rel. 149, 65 (2011).
35. Zharov, V.P., Mercer, K.E., Galitovskaya, E.N., Smeltzer, M.S., Biophys. J. 90, 619 (2006).
36. Urban, A.S., Pfeiffer, T., Fedoruk, M., Lutich, A.A., Feldmann, J., ACS Nano 5, 3585 (2011).
37. Stern, J., Stanfield, J., Kabbani, W., Hsieh, J., Cadeddu, J., J. Urol. 179, 748 (2008).
38. Paasonena, L., Sipilä, T., Subrizi, A., Laurinmäki, P., Butcher, S.J., Rappolt, M., Yaghmur, A., Urtti, A., Yliperttula, M., J. Control. Rel. 147, 136 (2010).
39. Qian, X., Peng, X., Ansari, D.O., Yin-Goen, Q., Chen, G.Z., Shin, D.M., Yang, L., Young, A.N., Wang, M.D., Nie, S., Nat. Biotechnol. 26, 83 (2008).
40. Bardhan, R., Lal, S., Joshi, A., Halas, N.J., Acc. Chem. Res. 44, 936 (2011).
41. Huang, X., El-Sayed, I.H., Qian, W., El-Sayed, M.A., J. Am. Chem. Soc. 128, 2115 (2006).
42. Wang, Y., Black, K.C., Luehmann, H., Li, W., Zhang, Y., Cai, X., Wan, D., Liu, S.Y., Li, M., Kim, P., Li, Z.Y., Wang, L.V., Liu, Y., Xia, Y., ACS Nano 7, 2068 (2013).
43. Wagner, D.S., Delk, N.A., Lukianova-Hleb, E.Y., Hafner, J.H., Farach-Carson, M.C., Lapotko, D.O., Biomaterials 31, 7567 (2010).
44. Ogilby, P.R., Chem. Soc. Rev. 39, 3181 (2010).
45. Paasonen, L., Laaksonen, T., Johans, C., Yliperttula, M., Kontturi, K., Urtti, A., J. Control. Rel. 122, 86 (2007).
46. Sershen, S.R., Westcott, S.L., Halas, N.J., West, J.L., J. Biomed. Mater. Res. 51, 293 (2000).
47. Takahashi, H., Niidome, Y., Yamada, S., Chem. Commun. 17, 2247 (2005).
48. Larson, T.A., Bankson, J., Aaron, J., Sokolov, K., Nanotechnology 18, 325101 (2007).
49. Gobin, A.M., Lee, M.H., Halas, N.J., James, W.D., Drezek, R.A., West, J.L., Nano Lett. 7, 1929 (2007).
50. Jin, Y., Jia, C., Huang, S., O’Donnell, M., Gao, X., Nat. Commun. 1, 41 (2010).
51. Larsson, E.M., Syrenova, S., Langhammer, C., Nanophotonics 1, 249 (2012).
52. Langhammer, C., Larsson, E.M., Kasemo, B., Zoric, I., Nano Lett. 10, 3529 (2010).
53. Stockman, M.I., Phys. Today 64, 39 (2011).
54. Im, H., Shao, H.L., Park, Y.I., Peterson, V.M., Castro, C.M., Weissleder, R., Lee, H., Nat. Biotechnol. 32, 490 (2014).
55. Ayas, S., Cupallari, A., Ekiz, O.O., Kaya, Y., Dana, A., ACS Photonics 1, 17 (2014).
56. Wu, H.J., Henzie, J., Lin, W.C., Rhodes, C., Li, Z., Sartorel, E., Thorner, J., Yang, P.D., Groves, J.T., Nat. Methods 9, 1189 (2012).
57. Cetin, A.E., Coskun, A.F., Galarreta, B.C., Huang, M., Herman, D., Ozcan, A., Altug, H., Light Sci. Appl. 3, e122 (2014).
58. Zhu, H., Sencan, I., Wong, J., Dimitrov, S., Tseng, D., Nagashima, K., Ozcan, A., Lab Chip 13, 1282 (2013).
59. Brown, L.V., Zhao, K., King, N., Sobhani, H., Nordlander, P., Halas, N.J., J. Am. Chem. Soc. 135, 3688 (2013).
60. Mohs, A.M., Mancini, M.C., Singhal, S., Provenzale, J.M., Leyland-Jones, B., Wang, M.D., Nie, S.M., Anal. Chem. 82, 9058 (2010).
61. Luo, S.C., Sivashanmugan, K., Liao, J.D., Yao, C.K., Peng, H.C., Biosens. Bioelectron. 61, 232 (2014).
62. Cowcher, D.P., Xu, Y., Goodacre, R., Anal. Chem. 85, 3297 (2013).
63. Ye, L.P., Hu, J., Liang, L., Zhang, C.Y., Chem. Commun. 50, 11883 (2014).
64. Kim, K., Han, H.S., Choi, I., Lee, C., Hong, S., Suh, S.H., Lee, L.P., Kang, T., Nat. Commun. 4, 2182 (2013).
65. Zhang, R., Zhang, Y., Dong, Z.C., Jiang, S., Zhang, C., Chen, L.G., Zhang, L., Liao, Y., Aizpurua, J., Luo, Y., Yang, J.L., Hou, J.G., Nature 498, 82 (2013).
66. Lu, F., Jin, M.Z., Belkin, M.A., Nat. Photonics 8, 307 (2014).
67. Assefa, S., Shank, S., Green, W., Khater, M., Kiewra, E., Reinholm, C., Kamlapurkar, S., Rylyakov, A., Schow, C., Horst, F., Pan, H., Topuria, T., Rice, P., Gill, D.M., Rosenberg, J., Barwicz, T., Yang, M., Proesel, J., Hofrichter, J., Offrein, B., Gu, X., Haensch, W., Ellis-Monaghan, J., Vlasov, Y., “A 90-nm CMOS Integrated Nano-Photonics Technology for 25 Gbps WDM Optical Communications Applications,” presented at the 2012 IEEE International Electron Devices Meeting (IEDM), San Francisco, December 10–13, 2012.
68. Davoyan, A., Engheta, N., Nat. Commun. 5, 5250 (2014).
69. Dionne, J.A., Sweatlock, L.A., Sheldon, M.T., Alivisatos, A.P., Atwater, H.A., IEEE J. Sel. Top. Quantum Electron. 16 (1), 295 (2010).
70. Dionne, J., Diest, K., Sweatlock, L., Atwater, H., Nano Lett. 9, 897 (2009).
71. Volker, S., Lanzillotti-Kimura, N., Ren-Min, M., Xiang, Z., Nanophotonics 1, 17 (2012).
72. Zhao, W., Lu, Z., Opt. Eng. 50, 74002 (2011).
73. Sweatlock, L.A., Diest, K., Opt. Express 20, 8700 (2012).
74. Kruger, B.A., Joushaghani, A., Poon, J.K.S., Opt. Express 20, 23598 (2012).
75. Babicheva, V.E., Zhukovsky, S.V., Lavrinenko, A.V., Opt. Express 22, 28890 (2014).
76. Gosciniak, J., Tan, D.T.H., Sci. Rep. 3, 1897 (2013).
77. Bao, Q., Loh, K.P., ACS Nano 6, 3677 (2012).
78. Melikyan, A., Alloatti, L., Muslija, A., Hillerkuss, D., Schindler, P.C., Li, J., Palmer, R., Korn, D., Muehlbrandt, S., Van Thourhout, D., Chen, B., Dinu, R., Sommer, M., Koos, C., Kohl, M., Freude, W., Leuthold, J., Nat. Photonics 8, 229 (2014).
79. Gosciniak, J., Bozhevolnyi, S.I., Andersen, T.B., Volkov, V.S., Kjelstrup-Hansen, J., Markey, L., Dereux, A.,Opt. Express 18, 1207 (2010).
80. Hill, M.T., Nat. Photonics 1, 589 (2007).
81. Lu, Y.-J., Kim, J., Chen, H.-Y., Wu, C., Dabidian, N., Sanders, C.E., Wang, C.-Y., Lu, M.-Y., Li, B.-H., Qiu, X., Chang, W.-H., Chen, L.-J., Shvets, G., Shih, C.-K., Gwo, S., Science 337, 450 (2012).
82. Ma, R.-M., Oulton, R.F., Sorger, V.J., Bartal, G., Zhang, X., Nat. Mater. 10, 110 (2011).
83. Noginov, M.A., Zhu, G., Belgrave, A.M., Bakker, R., Shalaev, V.M., Narimanov, E.E., Stout, S., Herz, E., Suteewong, T., Wiesner, U., Nature 460, 1110 (2009).
84. Khajavikhan, M., Simic, A., Katz, M., Lee, J.H., Slutsky, B., Mizrahi, A., Lomakin, V., Fainman, Y., Nature 482, 204 (2012).
85. Pickering, T., Hamm, J.M., Page, A.F., Wuestner, S., Hess, O., Nat. Commun. 5, 4972 (2014).
86. Walther, C., Scalari, G., Amanti, M.I., Beck, M., Faist, J., Science 327, 1495 (2010).
87. Sidiropoulos, T.P.H., Röder, R., Geburt, S., Hess, O., Maier, S.A., Ronning, C., Oulton, R.F., Nat. Phys. 10, 870 (2014).
88. Stockman, M.I., Nat. Photonics 2, 327 (2008).
89. Challener, W.A., Peng, C., Itagi, A.V., Karns, D., Peng, W., Peng, Y., Yang, X., Zhu, X., Gokemeijer, N.J., Hsia, Y.-T., Ju, G., Rottmayer, R. E., Seigler, M.A., Gage, E.C. Nat. Photonics 3, 220 (2009).
90. Zhou, N., Xu, X., Hammack, A.T., Stipe, B.C., Gao, K., Scholz, W., Gage, E.C., Nanophotonics 3, 141 (2014).
91. Zijlstra, P., Chon, J.W.M., Gu, M., Nature 459, 410 (2009).
92. Burgos, S.P., Yokogawa, S., Atwater, H.A., ACS Nano 7, 10038 (2013).
93. Diest, K., Dionne, J.A., Spain, M., Atwater, H.A., Nano Lett. 9, 2579 (2009).
94. Xu, T., Wu, Y.-K., Luo, X., Guo, L.J., Nat. Commun. 1, 1 (2010).
95. Huang, L., Chen, X., Mühlenbernd, H., Zhang, H., Chen, S., Bai, B., Tan, Q., Jin, G., Cheah, K.-W., Qiu, C.-W., Li, J., Zentgraf, T., Zhang, S., Nat. Commun. 4, 1 (2013).
96. Miller, D.A.B., Nat. Photonics 4, 3 (2010).
97. Fan, L., Wang, J., Varghese, L.T., Shen, H., Niu, B., Xuan, Y., Weiner, A.M., Qi, M., Science 335, 447 (2012).
98. Nazari, F., Bender, N., Ramezani, H., Moravvej-Farshi, M.K., Christodoulides, D.N., Kottos, T., Opt. Express 22, 9574 (2014).
99. Feng, L., Xu, Y.-L., Fegadolli, W.S., Lu, M.-H., Oliveira, J.E.B., Almeida, V.R., Chen, Y.-F., Scherer, A., Nat. Mater. 12, 108 (2013).
100. Feng, L., Ayache, M., Huang, J., Xu, Y.-L., Lu, M.-H., Chen, Y.-F., Fainman, Y., Scherer, A., Science 333, 729 (2011).
101. Naruse, M., Hori, H., Ishii, S., Drezet, A., Huant, S., Hoga, M., Ohyagi, Y., Matsumoto, T., Tate, N., Ohtsu, M., J. Opt. Soc. Am. B Opt. Phys. 31, 2404 (2014).
102. Alaeian, H., Dionne, J.A., Phys. Rev. A At. Mol. Opt. Phys. 89, 33829 (2014).
103. Alaeian, H., Dionne, J.A., Phys. Rev. B Condens. Matter 89, 75136 (2014).
104. Baum, B., Alaeian, H., Dionne, J.A., J. Appl. Phys. 117, 063106 (2015).
105. Akimov, A.V., Mukherjee, A., Yu, C.L., Chang, D.E., Zibrov, A.S., Hemmer, P.R., Park, H., Lukin, M.D., Nature 450, 402 (2007).
106. Choy, J.T., Hausmann, B.J.M., Babinec, T.M., Bulu, I., Khan, M., Maletinsky, P., Yacoby, A., Lončar, M., Nat. Photonics 5, 738 (2011).
107. Shalaginov, M.Y., Vorobyov, V.V., Liu, J., Ferrera, M., Akimov, A.V., Lagutchev, A., Smolyaninov, A.N., Klimov, V.V., Irudayaraj, J., Kildishev, A.V., Boltasseva, A., Shalaev, V.M., Laser Photon. Rev. 9, 120 (2015).
108. West, P.R., Ishii, S., Naik, G.V., Emani, N.K., Shalaev, V.M., Boltasseva, A., Laser Photon. Rev. 4, 795 (2010).
109. Emboras, A., Najar, A., Nambiar, S., Grosse, P., Augendre, E., Leroux, C., de Salvo, B., de Lamaestre, R.E., Opt. Express 20, 13612 (2012).
110. Delacour, C., Blaize, S., Grosse, P., Fedeli, J.M., Bruyant, A., Salas-Montiel, R., Lerondel, G., Chelnokov, A., Nano Lett. 10, 2922 (2010).
111. Chen, Q., Das, D., Chitnis, D., Walls, K., Drysdale, T.D., Collins, S., Cumming, D.R.S., Plasmonics 7, 695 (2012).
112. Kinsey, N., Ferrera, M., Naik, G. V., Babicheva, V.E., Shalaev, V.M., Boltasseva, A., Opt. Express 22, 12238 (2014).
113. Zheng, B.Y., Wang, Y., Nordlander, P., Halas, N.J., Adv. Mater. 26, 6318 (2014).
114. Sheikholeslami, S., Alaeian, H., Koh, A., Dionne, J., Nano Lett. 13, 4137 (2014).
115. Chanda, D., Shigeta, K., Gupta, S., Cain, T., Carlson, A., Mihi, A., Baca, A.J., Bogart, G.R., Braun, P., Rogers, J.A., Nat. Nanotechnol. 6, 402 (2011).
116. Henzie, J., Lee, M.H., Odom, T.W., Nat. Nanotechnol. 2, 549 (2007).


Localized fields, global impact: Industrial applications of resonant plasmonic materials

  • J.A. Dionne (a1), A. Baldi (a2), B. Baum (a3), C.-S. Ho (a4), V. Janković (a5), G.V. Naik (a6), T. Narayan (a7), J.A. Scholl (a8) and Y. Zhao (a9)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed