Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T15:10:35.966Z Has data issue: false hasContentIssue false

The Limits to Organic Photovoltaic Cell Efficiency

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

We consider the fundamental limits to organic solar cell efficiency, and the schemes that have been used to overcome many of these limitations. In particular, the use of double and bulk heterojunctions, as well as tandem cells employing materials with high exciton diffusion lengths, is discussed.We show that in the last few years, a combination of strategies has led to a power conversion efficiency of ηp = 5.7% (under AM 1.5 G simulated solar radiation at 1 sun intensity) for tandem cells based on small-molecularweight materials, suggesting that even higher efficiencies are possible.We conclude by considering the ultimate power conversion efficiency that is expected from organic thinfilm solar cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Peumans, P., Yakimov, A., and Forrest, S.R., J. Appl. Phys. 93 (2003) p. 3693.CrossRefGoogle Scholar
2.Tang, C.W., Appl. Phys. Lett. 48 (1986) p. 183.CrossRefGoogle Scholar
3.Peumans, P., Bulovic, V., and Forrest, S.R., Appl. Phys. Lett. 76 (2000) p. 2650.CrossRefGoogle Scholar
4.Peumans, P. and Forrest, S.R., Appl. Phys. Lett. 79 (2001) p. 126.CrossRefGoogle Scholar
5.Peumans, P., Uchida, S., and Forrest, S.R., Nature 425 (2003) p. 158.CrossRefGoogle Scholar
6.Yu, G., Gao, J., Hummelen, J., Wudl, F., and Heeger, A.J., Science 270 (1995) p. 1789.CrossRefGoogle Scholar
7.Sullivan, P., Heutz, S., Schultes, S.M., and Jones, T.S., Appl. Phys. Lett. 84 (2004) p. 1210.CrossRefGoogle Scholar
8.Uchida, S., Xue, J., Rand, B.P., and Forrest, S.R., Appl. Phys. Lett. 84 (2004) p. 4218.CrossRefGoogle Scholar
9.Yakimov, A. and Forrest, S.R., Appl. Phys. Lett. 80 (2002) p. 1667.CrossRefGoogle Scholar
10.Hiramoto, M., Suezaki, M., and Yokoyama, M., Chem. Lett. (1990) p. 327.CrossRefGoogle Scholar
11.Xue, J., Uchida, S., Rand, B.P., and Forrest, S.R., Appl. Phys. Lett. 86 (2005) p. 5757.CrossRefGoogle Scholar
12.Xue, J., Uchida, S., Rand, B.P., and Forrest, S.R., Appl. Phys. Lett. 84 (2004) p. 3015.CrossRefGoogle Scholar
13.Aernouts, T., Geens, W., Poortmans, J., Heremans, P., Borghs, S., and Mertens, R., Thin Solid Films 403– 404 (2002) p. 297.CrossRefGoogle Scholar
14.Xue, J., Rand, B.P., Uchida, S., and Forrest, S.R., Adv. Mater. (2005) in press.Google Scholar
15.Peumans, P. and Forrest, S.R., Chem. Phys. Lett. 398 (2004) p. 27.CrossRefGoogle Scholar
16.Wronski, C.R., Pearce, J.M., Koval, R.J., Ferlauto, A.S., and Collins, R.W., World Climate and Energy Event (RI002) (2002).Google Scholar