Skip to main content Accessibility help
×
Home

Light-Emitting Diodes: Progress in Solid-State Lighting

  • Artūras Žukauskas, Michael S. Shur and Remis Gaska

Extract

Until the beginning of the 19th century, flame produced by combustion was the only source of artificial light. Since then, physical phenomena other than pyroluminescence have been used to produce light. Limelight (incandescence of calcium oxide heated by the flame from an oxyhydrogen blowpipe), gas mantles (candoluminescence of gas-flame-heated rare-earth oxides), and the electrical Jablochkoff candle (an early type of carbon-arc lamp) were among the important milestones that led to modern lighting technology. In the 21st century, most of the residential lighting worldwide is provided by tungsten incandescent lamps. Compact fluorescent lamps are also actively promoted because of their higher performance—a broader spectrum for higher-quality white light and elimination of 100–120-Hz flickering, for example. Most work environments employ fluorescent tubes for general lighting, and street lighting is dominated by sodium lamps. Lighting consumes ∼2000 TWh of energy annually, about 21% of the global consumption of electricity. However, during the past 20 years, none of the conventional lighting technologies has exhibited a significant improvement in efficiency. The drive to save lighting energy and reduce its negative environmental impact (i.e., carbon emissions and the disposal of mercury contained in discharge lamps) stimulates the search for new, efficient sources of light.

Copyright

References

Hide All
1. Bowers, B., Lengthening the Day: A History of Lighting Technology (Oxford University Press, Oxford, 1998).
2. Coaton, J.R. and Marsden, A.M., eds., Lamps and Lighting (Arnold, London, 1997).
3. Lidow, A., in Proc. APEC'99—14th Annu. Applied Power Electronics Conf., Vol. 1 (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1999) p.10.
4. ukauskas, A. Z, Shur, M.S., and Gaska, R., Introduction to Solid-State Lighting (J. Wiley and Sons, New York) to be published.
5. Stringfellow, G.B. and Craford, M.G., eds., High Brightness Light Emitting Diodes, Semiconductors and Semimetals, Vol. 48 (Academic Press, New York, 1997).
6. Lee, S.J., Jpn. J. Appl. Phys., Part 1 37 (1998) p.509.
7. Krames, M.R., Holcomb, M. Ochia, Höfler, G.E., Carte Coman, C., Chen, E.I., Tan, I.H., Grillot, P., Gardner, N.F., Chui, H.C., Huang, J.W., Stockman, S.A., Kish, F.A., Craford, M.G., Tan, T.S., Kocot, C.P., Hueschen, M., Posselt, J., Loh, B., Sasser, G., and Collins, D., Appl. Phys. Lett. 75 (1999) p.2365.
8. Windisch, R., Dutta, B., Kuijk, M., Knobloch, A., Meinlschmidt, S., Schoberth, S., Kiesel, P., Borghs, G., Dohler, G.H., and Heremans, P., IEEE Trans. Electron Devices 47 (2000) p.1492.
9. Schubert, E.F., Hunt, N.E.J., Micovic, M., Malik, R.J., Sivco, D.L., Cho, A.Y., and Zydzik, G.J., Science 265 (1994) p.943.
10. Krauss, T.F. and Rue, R.M. De La, Progr. Quantum Electron. 23 (1999) p.51.
11. kovic, J.Vuc, ar, M. Lonc, and Scherer, A., IEEE J.Quantum Electron. 36 (2000) p.1131.
12. Steranka, F.M., in High Brightness Light Emitting Diodes, Semiconductors and Semimetals, Vol. 48, edited by Stringfellow, G.B. and Craford, M.G. (Academic Press, New York, 1997)p. 65.
13. Kish, F.A. and Fletcher, R.M., in High Brightness Light Emitting Diodes, Semiconductors and Semimetals, Vol.48, edited by Stringfellow, G.B. and Craford, M.G. (Academic Press, New York, 1997) p.149.
14. Sugawara, H., Itaya, K., Nozaki, H., and Hatakoshi, G., Appl. Phys. Lett. 61 (1992) p.1775.
15. Chiou, S.W., Lee, C.P., Huang, C.K., and Chen, C.W., J. Appl. Phys. 87 (2000) p.2052.
16. Kish, F.A., Steranka, F.M., DeFevere, D.C., Vanderwater, D.A., Park, K.G., Kuo, C.P., Osentowski, T.D., Peanasky, M.J., Yu, J.G., Fletcher, R.M., Steigerwald, D.A., Craford, M.G., and Robbins, V.M., Appl. Phys. Lett. 64 (1994) p.2839.
17. Nakamura, S. and Fasol, G., The Blue Laser Diode: GaN Based Light Emitters and Lasers (Springer, Berlin, 1997) p. 343.
18. Amano, H., Sawaki, N., Akasaki, I., and Toyoda, Y., Appl. Phys. Lett. 48 (1986) p.353.
19. Nakamura, S., Jpn. J.Appl. Phys., Part 2: Lett. 30 (1991) p.L1705.
20. Nakamura, S., Iwasa, N., Senoh, M., and Mukai, T., Jpn. J.Appl. Phys., Part 1 31 (1992) p.1258.
21. Nakamura, S., Mukai, T., and Senoh, M., Appl. Phys. Lett. 64 (1994) p.1687.
22. Kuga, Y., Shirai, T., Haruyama, M., Kawanishi, H., and Suematsu, Y., Jpn. J.Appl. Phys., Part 1 34 (1995) p.4085.
23. Yang, J.W., Chen, Q., Sun, C.J., Lim, B., Anwar, M.Z., Khan, M.A., and Temkin, H., Appl. Phys. Lett. 69 (1996) p.369.
24. Lee, S.J., Jpn. J. Appl. Phys., Part 1 37 (1998) p.5990.
25. Mukai, T., Yamada, M., and Nakamura, S., Jpn. J.Appl. Phys., Part 1 38 (1999) p.3976.
26. Yang, J.W., Lunev, A., Simin, G., Chitnis, A., Shatalov, M., Khan, M.A., Nostrand, J.E. Van, and Gaska, R., Appl. Phys. Lett. 76 (2000) p.273.
27. Chitnis, A., Kumar, A., Shatalov, M., Adivarahan, V., Lunev, A., Yang, J.W., Simin, G., Khan, M.A., Gaska, R., and Shur, M., Appl. Phys. Lett. 77 (2000) p. 3800; M. Shatalov, A. Chitnis, V. Adivarahan, A. Lunev, J. Zhang, J.W. Yang, Q. Fareed, G. Simin, A. Zakheim, M.A. Khan, R. Gaska, and M.S. Shur, Appl. Phys. Lett. 78 (2001) p.817.
28. Wierer, J.J., Steigerwald, D.A., Krames, M.R., O'Shea, J.J., Ludowise, M.J., Christenson, G., Shen, Y.C., Lowery, C., Martin, P.S., Subramanya, S., Götz, W., Gardner, N.F., Kern, R.S., and Stockman, S.A., Appl. Phys. Lett. 78 (2001) p.3379.
29. Narendran, N., Maliyagoda, N., Bierman, A., Pysar, R., and Overington, M., in Proc. SPIE, Ligh.Emitting Diodes: Research, Manufacturing, and Applications IV, Vol. 3938, edited by Yao, H.W., Ferguson, I.T., and Schubert, E.F. (SPIE—The International Society for Optical Engineering, Bellingham, WA, 2000) p.240.
30. Mach, R. Muelle and Mueller, G.O., in Proc. SPIE, Ligh.Emitting Diodes: Research, Manufacturing, and Applications IV, Vol. 3938, edited by Yao, H.W., Ferguson, I.T., and Schubert, E.F. (SPIE—The International Society for Optical Engineering, Bellingham, WA, 2000) p.30.
31. Eisert, D., Strauss, U., Bader, S., Lugauer, H.J., Fehrer, M., Hahn, B., Baur, J., Zehnder, U., Stath, N., and Härle, V., Inst. Pure Appl. Phys. Conf. Ser. 1 (2000) p.841.
32. Bogner, G., Debray, A., Heidel, G., Hoehn, K., Mueller, U., and Schlotter, P., in Proc. SPIE, Ligh.Emitting Diodes: Research, Manufacturing, and Applications III, Vol. 3621, edited by Schubert, E., Ferguson, I.T., and Yao, H. (SPIE—The International Society for Optical Engineering, Bellingham, WA, 1999) p.143.
33. Ivanauskas, F., Vaicekauskas, R., ukauskas, A. Z, Shur, M.S., and Gaska, R., “Optimization of the Parameters of White Polychromatic Light Emitting Diode,” presented at the 6th Int. Conf. on Mathematical Modeling and Analysis, Vilnius, June 2001.
34. Haitz, R., Kish, F., Tsao, J., and Nelson, J., Compound Semicond. 6 (2) (2000) p. 34.
35. Hodapp, M.W., in High Brightness Light Emitting Diodes, Semiconductors and Semimetals, Vol. 48, edited by Stringfellow, G.B. and Craford, M.G. (Academic Press, New York, 1997) p.227.
36. Schweber, B., “Blue LEDs, Digital TV Bring Dayligh. Bright Signs to Masses,” EDN No. 8 (2000) p. 56, available from http://www.ednmag.com.
37. Okamoto, K., Yanagi, T., Takita, S., Tanaka, M., Higuchi, T., Uchida, Y., and Watanabe, H., Acta Hortic. 440 (1996) p.111.
38. Holonyak, N. Jr., Am. J.Phys. 68 (2000) p.864.

Light-Emitting Diodes: Progress in Solid-State Lighting

  • Artūras Žukauskas, Michael S. Shur and Remis Gaska

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed