Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-08T11:48:12.923Z Has data issue: false hasContentIssue false

Interface Studies with Nonlinear Optics

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The importance of interfaces for material science and electronic devices has stimulated great interest in the development of surface analytical tools. Among them, modern optical techniques using lasers have attracted the most attention in recent years. They have the advantage of being applicable to all interfaces accessible by light, and the high temporal, spatial, and spectral resolutions offer unique opportunities for studying ultrafast molecular dynamics and other transient phenomena at interfaces. Optical second harmonic generation (SHG) and sum-frequency generation (SFG) are particularly being noticed because of the many recent successful demonstrations of their versatility. This article briefly introduces these newly developed surface probes, first outlining the basic principles behind surface SHG and SFG, and then illustrating the power of the techniques with selected examples. A more complete treatment of the theory can be found in References 4–6. An overview of the earlier applications can be found in Reference 3.

SHG arises from the nonlinear polarization P(2)(2ω) induced in a medium by an incident laser field E(ω). In the electric dipole approximation, P is given by:

where is a second-order nonlinear susceptibility. For a medium with inversion symmetry, it follows directly from Eq. 1 that = 0. However, at an interface the surface nonlinear susceptibility is nonvanishing because there the inversion symmetry is necessarily broken.

Type
Technical Features
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. See, for example, Somorjai, G., Chemistry in Two Dimensions: Surfaces (Cornell Univ. Press, New York, 1981).Google Scholar
2. See, for example, Surface Studies with Lasers, edited by Aussenegg, F.R., Leitner, A., and Lippitsch, M.E. (Springer-Verlag, Berlin, 1983).CrossRefGoogle Scholar
3.Shen, Y.R., J. Vac. Sci. Technol. B 3 (1985) p. 1464; Ann. Rev. Mater. Sci. 16 (1986) p. 69.Google Scholar
4.Shen, Y.R., The Principles of Nonlinear Optics (J. Wiley, New York, 1984).Google Scholar
5.Guyot-Sionnest, P., Chen, W., and Shen, Y.R., Phys. Rev. B 33 (1986) p. 8254.CrossRefGoogle Scholar
6.Guyot-Sionnest, P. and Shen, Y.R., Phys. Rev. B 35 (1987) p. 4420.CrossRefGoogle Scholar
7.Tom, H.W.K., Mate, C.M., Zhu, X.D., Crowell, J.E., Heinz, T.F., Somorjai, G.A., and Shen, Y.R., Phys. Rev. Lett. 52 (1984) p. 348; X.D. Zhu, Y.R. Shen, and R. Carr, Surf. Sci. 163 (1985) p. 114.CrossRefGoogle Scholar
8.Brubb, S.G., de Santolo, A.M., and Hall, R.B., J. Phys. Chem. 92 (1988) p. 1419.Google Scholar
9.Tom, H.W.K., Zhu, X.D., Shen, Y.R., and Somorjai, G.A., Surf. Sci. 167 (1986) p. 167.CrossRefGoogle Scholar
10.Heinz, T.F., Loy, M.M.T., and Thompson, W.A., Phys. Rev. Lett. 54 (1985) p. 63.CrossRefGoogle Scholar
11.Heinz, T.F., Tom, H.W.K., and Shen, Y.R., Phys. Rev. A 28 (1983) p. 1883.CrossRefGoogle Scholar
12.Shank, C.V., Yen, R., and Hirlimann, C., Phys. Rev. Lett. 51 (1983) p. 900.CrossRefGoogle Scholar
13.Tom, H.W.K., Aumiller, C.D., and Cruz, C.H. Brito, Phys. Rev. Lett. 60 (1988) p. 1438.CrossRefGoogle Scholar
14.Rasing, Th., Shen, Y.R., Kim, M.W., and Grubb, S., Phys. Rev. Lett. 55 (1985) p. 2903.CrossRefGoogle Scholar
15.Grubb, S.G., Kim, M.W., Rasing, Th., and Shen, Y.R., Langmuir 4 (1988) p. 452.CrossRefGoogle Scholar
16.Boyd, G.T., Shen, Y.R., and Hansch, T.W., Opt. Lett. 11 (1986) p. 97.CrossRefGoogle Scholar
17.Rasing, Th., Berkovic, G., Shen, Y.R., Grubb, S.G., and Kim, M.W., Chem. Phys. Lett. 130 (1986) p. 1; G. Berkovic, Th. Rasing, and Y.R. Shen, J. Opt. Soc. Am. B4 (1987) p. 945; G. Berkovic, Y.R. Shen, and M. Schadt, Mol. Cryst. Liq. Cryst. 150b (1987) p. 607.CrossRefGoogle Scholar
18.Hsiung, H., Rasing, Th., Shen, Y.R., Shvartsman, F.P., Cabrera, I.R., and Krongauz, V.A., J. Chem. Phys. 87 (1987) p. 3127.CrossRefGoogle Scholar
19.Berkovic, G., Rasing, Th., and Shen, Y.R., J. Chem. Phys. 85 (1986) p. 7374.CrossRefGoogle Scholar
20.Huang, J., Lewis, A., and Rasing, Th., J. Phys. Chem. 92 (1988) p. 1756.CrossRefGoogle Scholar
21.Chen, C.K., Heinz, T.F., Ricard, D., and Shen, Y.R., Phys. Rev. Lett. 46 (1981) p. 1010.CrossRefGoogle Scholar
22.Richmond, G.L., Rojhantalab, H.M., Robinson, J.M., and Shannon, V.L., J. Opt. Soc. Am. B 4 (1987) p. 228.CrossRefGoogle Scholar
23.Shannon, Y.L., Koos, D.A., Robinson, J.M., Richmond, G.L., Chem. Phys. Lett. 142 (1987) p. 323.Google Scholar
24.Zhu, X.D., Suhr, H., and Shen, Y.R., Phys. Rev. B 35 (1987) p. 3047.CrossRefGoogle Scholar
25.Guyot-Sionnest, P., Hunt, J.H., and Shen, Y.R., Phys. Rev. Lett. 59 (1987) p. 1597; Chem. Phys. Lett. 133 (1987) p. 189.CrossRefGoogle Scholar
26.Guyot-Sionnest, P., Superfine, R., Hunt, J.H., and Shen, Y.R., Chem. Phys. Lett. 144 (1988) p. 1.CrossRefGoogle Scholar