Skip to main content Accessibility help
×
Home

In situ electrochemical scanning/transmission electron microscopy of electrode–electrolyte interfaces

  • Raymond R. Unocic (a1), Katherine L. Jungjohann (a2), B. Layla Mehdi (a3), Nigel D. Browning (a4) and Chongmin Wang (a5)...

Abstract

Insights into the dynamics of electrochemical processes are critically needed to improve our fundamental understanding of electron, charge, and mass transfer mechanisms and reaction kinetics that influence a broad range of applications, from the functionality of electrical energy-storage and conversion devices (e.g., batteries, fuel cells, and supercapacitors), to materials degradation issues (e.g., corrosion and oxidation), and materials synthesis (e.g., electrodeposition). To unravel these processes, in situ electrochemical scanning/transmission electron microscopy (ec-S/TEM) was developed to permit detailed site-specific characterization of evolving electrochemical processes that occur at electrode–electrolyte interfaces in their native electrolyte environment, in real time and at high-spatial resolution. This approach utilizes “closed-form” microfabricated electrochemical cells that couple the capability for quantitative electrochemical measurements with high spatial and temporal resolution imaging, spectroscopy, and diffraction. In this article, we review the state-of-the-art instrumentation for in situ ec-S/TEM and how this approach has resulted in new observations of electrochemical processes.

Copyright

References

Hide All
1.Tripathi, A.M., Su, W.N., Hwang, B.J., Chem. Soc. Rev. 47, 736 (2018).
2.Pennycook, S.J., Nellist, P.D., Scanning Transmission Electron Microscopy (Springer, New York, 2011).
3.Ross, F.M., Science 350, aaa9886-1 (2015).
4.Ross, F.M., Liquid Cell Electron Microscopy (Cambridge University Press, Cambridge, UK, 2017).
5.Grogan, J.M., Bau, H.H., J. Microelectromech. Syst. 19, 885 (2010).
6.Williamson, M.J., Tromp, R.M., Vereecken, P.M., Ross, F.M., Nat. Mater. 2, 532 (2003).
7.Leenheer, A.J., Sullivan, J.P., Shaw, M.J., Harris, C.T., J. Microelectromech. Syst. 24, 1061 (2015).
8.Unocic, R.R., Sacci, R.L., Brown, G.M., Veith, G.M., Dudney, N.J., More, K.L., Walden, F.S., Gardiner, D.S., Damiano, J., Nackashi, D.P., Microsc. Microanal. 20, 452 (2014).
9.Fahrenkrug, E., Alsem, D.H., Salmon, N., Maldonado, S., J. Electrochem. Soc. 164, H358 (2017).
10.Girod, R., Nianias, N., Tileli, V., Microsc. Microanal. 25, 1304 (2019).
11.Radisic, A., Vereecken, P.M., Hannon, J.B., Searson, P.C., Ross, F.M., Nano Lett. 6, 238 (2006).
12.Radisic, A., Vereecken, P.M., Searson, P.C., Ross, F.M., Surf. Sci. 600, 1817 (2006).
13.Yang, J., Andrei, C.M., Chan, Y., Mehdi, B.L., Browning, N.D., Botton, G.A., Soleymani, L., Langmuir 35, 862 (2019).
14.Yang, J., Andrei, C.M., Botton, G.A., Soleymani, L., J. Phys. Chem. C 121, 7435 (2017).
15.Chen, X., Noh, K.W., Wen, J.G., Dillon, S.J., Acta Mater. 60, 192 (2012).
16.White, E.R., Singer, S.B., Augustyn, V., Hubbard, W.A., Mecklenburg, M., Dunn, B., Regan, B.C., ACS Nano 6, 6308 (2012).
17.Sun, M., Liao, H.G., Niu, K., Zheng, H., Sci. Rep. 3, 3227 (2013).
18.Park, J.H., Schneider, N.M., Steingart, D.A., Deligianni, H., Kodambaka, S., Ross, F.M., Nano Lett. 18, 1093 (2018).
19.Goodenough, J.B., Kim, Y., Chem. Mater. 22, 587 (2010).
20.Leenheer, A.J., Jungjohann, K.L., Zavadil, K.R., Sullivan, J.P., Harris, C.T., ACS Nano 9, 4379 (2015).
21.Lutz, L., Dachraoui, W., Demortière, A., Johnson, L.R., Bruce, P.G., Grimaud, A., Tarascon, J.-M., Nano Lett. 18, 1280 (2018).
22.Gu, M., Parent, L.R., Mehdi, B.L., Unocic, R.R., McDowell, M.T., Sacci, Robert L., Xu, W., Connell, J.G., Xu, P., Abellan, P., Chen, X., Zhang, Y., Perea, D.E., Evans, J.E., Lauhon, L.J., Zhang, J.-G., Liu, J., Browning, N.D., Cui, Y., Arslan, I., Wang, C.-M., Nano Lett. 13, 6106 (2013).
23.Unocic, R.R., Sun, X.G., Sacci, R.L., Adamczyk, L.A., Alsem, D.H., Dai, S., Dudney, N.J., More, K.L., Microsc. Microanal. 20, 1029 (2014).
24.Zeng, Z., Zhang, X., Bustillo, K., Niu, K., Gamme, C., Xu, J., Zheng, H., Nano Lett. 15, 5214 (2015).
25.Zeng, Z., Liang, W.-I., Chu, Y.-H., Zheng, H., Faraday Discuss. 176, 95 (2014).
26.Zeng, Z., Liang, W.-I., Liao, H.-G., Xin, H.L., Chu, Y.-H., Zheng, H., Nano Lett. 14, 1745 (2014).
27.Sacci, R.L., Dudney, N.J., More, K.L., Parent, L.R., Arslan, I., Browning, N.D., Unocic, R.R., Chem. Commun. 50, 2104 (2014).
28.Sacci, R.L., Black, J.M., Balke, N., Dudney, N.J., More, K.L., Unocic, R.R., Nano Lett. 15, 2011 (2015).
29.Mehdi, B.L., Qian, J., Nasybulin, E., Park, C., Welch, D.A., Faller, R., Mehta, H., Henderson, W.A., Xu, W., Wang, C.M., Evans, J.E., Liu, J., Zhang, J.G., Mueller, K.T., Browning, N.D., Nano Lett. 15, 2168 (2015).
30.Sacci, R.L., Black, J.M., Balke, N., Dudney, N.J., More, K.L., Unocic, R.R., Nano Lett. 15, 2011 (2015).
31.Leenheer, A.J., Jungjohann, K.L., Zavadil, K.R., Sullivan, J.P., Harris, C.T., ACS Nano 9, 4379 (2015).
32.Harrison, K.L., Zavadil, K.R., Hahn, N.T., Meng, X., Elam, J.W., Leenheer, A., Zhang, J.-G., Jungjohann, K.L., ACS Nano 11, 11194 (2017).
33.Kushima, A., So, K.P., Su, C., Bai, P., Kuriyama, N., Maebashi, T., Fujiwara, Y., Bazant, M.Z., Li, J., Nano Energy 32, 271 (2017).
34.Mehdi, B.L., Stevens, A., Qian, J., Park, C., Xu, W., Henderson, W.A., Zhang, J.G., Mueller, K.T., Browning, N.D., Sci. Rep. 6, 34267 (2016).
35.Li, Y., Li, Y., Pei, A., Yan, K., Sun, Y., Wu, C.-L., Joubert, L.-M., Chin, R., Koh, A.L., Yu, Y., Perrino, J., Butz, B., Chu, S., Cui, Y., Science 358, 506 (2017).
36.Zachman, M.J., Tu, Z., Choudhury, S., Archer, L.A., Kourkoutis, L.F., Nature 560, 345 (2018).
37.Kushima, A., Koido, T., Fujiwara, Y., Kuriyama, N., Kusumi, N., Li, J., Nano Lett. 15, 8260 (2015).
38.Karakulina, O.M., Demortière, A., Dachraoui, W., Abakumov, A.M., Hadermann, J., Nano Lett. 18, 6286 (2018).
39.Holtz, M.E., Yu, Y., Gunceler, D., Gao, J., Sundararaman, R., Schwarz, K.A., Arias, T.A., Abruña, H.D., Muller, D.A., Nano Lett. 14, 1453 (2014).
40.Hodnik, N., Dehm, G., Mayrhofer, K.J., Acc. Chem. Res. 49, 2015 (2016).
41.Zhu, G.-Z., Prabhudev, S., Yang, J., Gabardo, C.M., Botton, G.A., Soleymani, L., J. Phys. Chem. C 118, 22111 (2014).
42.Beermann, V., Holtz, M.E., Padgett, E., de Araujo, J.F., Muller, D.A., Strasser, P., Energy Environ. Sci. 12, 2476 (2019).
43.Bastidas, D.M., Metals 10, 458 (2020).
44.Kosari, A., Zandbergen, H., Tichelaar, F., Visser, P., Terryn, H., Mol, A., Corrosion 76, 4 (2020).
45.Chee, S., Hull, R., Ross, F., Microsc. Microanal. 18, 1110 (2012).
46.Chee, S.W., Duquette, D.J., Ross, F.M., Hull, R., Microsc. Microanal. 20, 462 (2014).
47.Chee, S.W., Pratt, S.H., Hattar, K., Duquette, D., Ross, F.M., Hull, R., Chem. Commun. 51, 168 (2015).
48.Gross, D., Kacher, J., Key, J., Hattar, K., Robertson, I.M., Proc. Process. Prop. Des. Adv. Ceram. Compos. 261, (2017), p. 329.
49.Key, J.W., Zhu, S., Rouleau, C.M., Unocic, R.R., Xie, Y., Kacher, J., Ultramicroscopy 209, 112842 (2020).
50.Malladi, S., Shen, C., Xu, Q., de Kruijff, T., Yücelen, E., Tichelaar, F., Zandbergen, H., Chem. Commun. 49, 10859 (2013).
51.Schilling, S., Janssen, A., Zaluzec, N.J., Burke, M.G., Microsc. Microanal. 23, 741 (2017).
52.Hayden, S.C., Chisholm, C., Grudt, R.O., Aguiar, J.A., Mook, W.M., Kotula, P.G., Pilyugina, T.S., Bufford, D.C., Hattar, K., Kucharski, T.J., Taie, I.M., Ostraat, M.L., Jungjohann, K.L., NPJ Mater. Degrad. 3, 1 (2019).
53.Gao, K., Chu, W., Gu, B., Zhang, T., Qiao, L., Corrosion 56, 515 (2000).
54.Bhowmick, S., Espinosa, H., Jungjohann, K., Pardoen, T., Pierron, O., MRS Bull. 44, 487 (2019).
55.Lewis, B.B., Stanford, M.G., Fowlkes, J.D., Lester, K., Plank, H., Rack, P.D., Beilstein J. Nanotechnol. 6, 907 (2015).
56.Leenheer, A.J., Jungjohann, K.L., Harris, C.T., Microsc. Microanal. 21, 1293 (2015).
57.Hart, J.L., Lang, A.C., Leff, A.C., Longo, P., Trevor, C., Twesten, R.D., Taheri, M.L., Sci. Rep. 7, 1 (2017).
58.Schneider, N.M., Norton, M.M., Mendel, B.J., Grogan, J.M., Ross, F.M., Bau, H.H., J. Phys. Chem. C 118, 22373 (2014).
59.Woehl, T.J., Abellan, P., J. Microsc. 265, 135 (2017).
60.Woehl, T.J., Jungjohann, K.L., Evans, J.E., Arslan, I., Ristenpart, W.D., Browning, N.D., Ultramicroscopy 127, 53 (2013).
61.Abellan, P., Mehdi, B.L., Parent, L.R., Gu, M., Park, C., Xu, W., Zhang, Y., Arslan, I., Zhang, J.-G., Wang, C.-M., Evans, J.E., Browning, N.D., Nano Lett. 14, 1293 (2014).
62.Sutter, E.A., Sutter, P.W., J. Am. Chem. Soc. 136, 16865 (2014).
63.Karki, K., Mefford, T., Alsem, D.H., Salmon, N., Chueh, W.C., Microsc. Microanal. 24, 324 (2018).
64.Stricker, E.A., Ke, X., Wainright, J.S., Unocic, R.R., Savinell, R.F., J. Electrochem. Soc. 166, H126 (2019).
65.Mehdi, B.L., Stevens, A., Kovarik, L., Jiang, N., Mehta, H., Liyu, A., Reehl, S., Stanfill, B., Luzi, L., Hao, W., Bramer, L., Browning, N.D., Appl. Phys. Lett. 115 063102 (2019).
66.Kim, B.H., Heo, J., Kim, S., Reboul, C.F., Chun, H., Kang, D., Bae, H., Hyun, H., Lim, J., Lee, H., Han, B., Hyeon, T., Alivisatos, A.P., Ercius, P., Elmlund, H., Park, J., Science 368, 60 (2020).
67.Zachman, M.J., Hachtel, J.A., Idrobo, J.C., Chi, M., Angew. Chem. Int. Ed. Engl. 59, 1384 (2020).

In situ electrochemical scanning/transmission electron microscopy of electrode–electrolyte interfaces

  • Raymond R. Unocic (a1), Katherine L. Jungjohann (a2), B. Layla Mehdi (a3), Nigel D. Browning (a4) and Chongmin Wang (a5)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.