Skip to main content Accessibility help
×
Home

The Importance of New Processing Techniques in Tissue Engineering

  • Lichun Lu and Antonios G. Mikos

Extract

Tissue engineering offers the possibility to create completely natural tissue and replace failing or malfunctioning organs. In many cases, biocompatible, biodegradable polymers are utilized to either induce surrounding tissue and cell ingrowth or to serve as a temporary scaffold for transplanted cells to attach, grow, and maintain differentiated functions. Various processing techniques have therefore been developed to fabricate polymers with specific properties to meet the needs of a particular organ.

Polymer scaffolds must possess unique physical and chemical properties for specific applications and must satisfy some basic requirements for tissue engineering. These scaffolds may be implanted without cells, and the regeneration depends on ingrowth of surrounding tissue to such materials—a process known as tissue induction. Alternatively cells may be seeded into a porous polymer. The cell-polymer construct is then transplanted. In either case, one essential criterion for the scaffold is biocompatibility—that is, the polymer scaffolds and their degradation products should not invoke an adverse immune response or toxicity.

Because of the problems associated with long-term implants, such as infection, fibrous tissue formation, and the possible need for retrieval, the role of polymer scaffolds should only be a temporary one. The degradation rate is optimized to allow transplanted cells to proliferate and secrete their own extracellular matrix (ECM) while polymer scaffolds can vanish when necessary to leave enough space for new tissue growth. Biodegradability of a polymer is determined by its composition, molecular weight (MW), MW distribution, degree of crystallinity, and environmental conditions such as temperature and pH. Mechanical loading of the scaffold may affect its degradation.

Copyright

References

Hide All
1.Langer, R. and Vacanti, J.P., Science 260 (1993) p. 920.
2.Gristina, A.G., Science 237 (1987) p. 1588.
3.Thomson, R.C., Wake, M.C., Yaszemski, M.J., and Mikos, A.G., Adv. Polym. Sci. 122 (1995) p. 245.
4.Thompson, D.E., Agrawal, C.M., and Athanasiou, K., Tissue Eng. 2 (1996) p. 61.
5.Mikos, A.G., Sarakinos, G., Lyman, M.D., Ingber, D.E., Vacanti, J.P., and Langer, R., Biotech. Bioeng. 42 (1993) p. 716.
6.Hubbell, J.A., Bio/Technology 13 (1995) p. 565.
7.Boyan, B.D., Hummert, T.W., Dean, D.D., and Schwartz, Z., Biomaterials 17 (1996) p. 137.
8.Wake, M.C., Patrick, C.W. Jr., and Mikos, A.G., Cell Transplant. 3 (1994) p. 339.
9.Vacanti, C.A., Langer, R., Schloo, B., and Vacanti, J.P., Plast. Reconstr. Surg. 88 (1991) p. 753.
10.Mooney, D., Hansen, L., Vacanti, J., Langer, R., Farmer, S., and Ingber, D., J. Cell Physiol. 151 (1992) p. 497.
11.Giordano, G.G., Thomson, R.C., Ishaug, S.L., Mikos, A.G., Cumber, S., Garcia, C.A., and Lahiri-Munir, D., J. Biomed. Mater. Res. in press.
12.Moghe, P.V., Berthiaume, F., Ezzell, R.M., Toner, M., Tompkins, R.G., and Yarmush, M.L., Biomaterials 17 (1996) p. 373.
13.Vacanti, C.A., Kim, W., Upton, J., Vacanti, M.P., Mooney, D., Schloo, B., and Vacanti, J.P., Transplant. Proc. 25 (1993) p. 1019.
14.Freed, L.E., Marquis, J.C., Nohria, A., Emmanual, J., Mikos, A.G., and Langer, R., J. Biomed. Mater. Res. 27 (1993) p. 11.
15.Ishaug, S.L., Yaszemski, M.J., Bizios, R., and Mikos, A.G., J. Biomed. Mater. Res. 28 (1994) p. 1445.
16.Gilding, D.K. and Reed, A.M., Polymer 20 (1979) p. 1459.
17.Mikos, A.G., Bao, Y., Cima, L.G., Ingber, D.E., Vacanti, J.P., and Langer, R., J. Biomed. Mater. Res. 27 (1993) p. 183.
18.Mooney, D.J., Mazzoni, C.L., Organ, G.M., Puelacher, W.C., Vacanti, J.P., and Langer, R., in Biomaterials for Drug and Cell Delivery, edited by Mikos, A.G., Murphy, R.M., Bernstein, H., and Peppas, N.A. (Mater. Res. Soc. Symp. Proc. 331, Pittsburgh, 1994) p. 47.
19.Mikos, A.G., Thorsen, A.J., Czerwonka, L.A., Bao, Y., and Langer, R., Polymer 35 (1994) p. 1068.
20.Ishaug, S.L., Crane, G.M., Miller, M.J., Yasko, A.W., Yaszemski, M.J., and Mikos, A.G., “Bone Formation by Three-Dimensional Stromal Osteoblast Culture in Biodegradable Polymer Scaffolds,” J. Biomed. Mater. Res in press.
21.Wake, M.C., Gupta, P.K., and Mikos, A.G., Cell Transplant. 5 (1996) p. 465.
22.Mikos, A.G., Sarakinos, G., Leite, S.M., Vacanti, J.P., and Langer, R., Biomaterials 14 (1993) p. 323.
23.Mooney, D.J., Organ, G., Vacanti, J.P., and Langer, R., Cell Transplant. 3 (1994) p. 203.
24.Thomson, R.C., Yaszemski, M.J., Powers, J.M., and Mikos, A.G., J. Biomater. Sci. Polytn. Edn. 7 (1995) p. 23.
25.Thomson, R.C., Yaszemski, M.J., Powers, J.M., and Mikos, A.G., in Polymers in Medicine and Pharmacy, edited by Mikos, A.G., Leong, K.W., Yaszemski, M.J., Tamada, J.A., and Radomsky, M.L. (Mater. Res. Soc. Symp. Proc. 394, Pittsburgh, 1995) p. 25.
26.Lo, H., Ponticiello, M.S., and Leong, K.W., Tissue Eng. 1 (1995) p. 15.
27.Mooney, D.J., Baldwin, D.F., Suh, N.P., Vacanti, J.P., and Langer, R., Biomaterials 17 (1996) p. 1417.

The Importance of New Processing Techniques in Tissue Engineering

  • Lichun Lu and Antonios G. Mikos

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed