Skip to main content Accessibility help

High-Efficiency Multijunction Solar Cells

  • Frank Dimroth and Sarah Kurtz


The efficiency of a solar cell can be increased by stacking multiple solar cells with a range of bandgap energies, resulting in a multijunction solar cell with a maximum the oretical efficiency limit of 86.8% III–V compound semiconductors are good candidates for fabricating such multijunction solar cells for two reasons: they can be grown with excellent material quality; and their bandgaps span a wide spectral range, mostly with direct bandgaps, implying a high absorption coefficient. These factors are the reason for the success of this technology, which has achieved 39% efficiency, the highest solar-to-electric conversion efficiency of any photovoltaic device to date. This article explores the materials science of today's high-efficiency multijunction cells and describes challenges associated with new materials developments and how they may lead to next-generation, multijunction solar cell concepts.



Hide All
1.Hering, G., Photon Int. (July 2005) p. 50.
2.King, R.R., Law, D.C., Fetzer, C.M., Sherif, R.A., Edmondson, K.M., Kurtz, S., Kinsey, G.S., Cotal, H.L., Krut, D.D., Ermer, J.H., and Karam, N.H., Proc. 20th Eur. Photovoltaic Solar Energy Conf. (Barcelona, Spain, 2005) p. 118.
3.Bailey, S.G., Raffaelle, R., and Emery, K., Prog. Photovolt. Res. Appl. 10 (2002) p. 399.
4.Shockley, W. and Queisser, H.J., J. Appl. Phys. 32 (1961) p. 510.
5.Marti, A. and Araujo, G.L., Sol. Energy Mater. Sol. Cells 43 (1996) p. 203.
6.Brown, A.S. and Green, M.A., Prog. Photovolt. Res. Appl. 10 (2002) p. 299.
7.Shockley, W.B. and Read, W.T.J., Phys. Rev. 87 (5) (1952) p. 835.
8.Dimroth, F., Phys. Status Solidi C 3 (3) (2006) p. 373.
9.Bett, A.W., Baur, C., Dimroth, F., Schöne, J., Mater. Res. Soc. Symp. Proc. 836 (2005) L6.4.1.
10.Wanlass, M., Ahrenkiel, P., Albin, D., Carapella, J., Duda, A., Emery, K., Friedman, D., Geisz, J., Jones, K., Kibbler, A., Kiehl, J., Kurtz, S., McMahon, W., Moriarty, T., Olson, J., Ptak, A., Romero, M., and Ward, S., Proc. WCPEC-4 (Waikoloa, Hawaii, 2006) p. 729.


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed