Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-25T00:56:58.230Z Has data issue: false hasContentIssue false

Heterogeneous Ziegler-Natta, metallocene, and post-metallocene catalysis: Successes and challenges in industrial application

Published online by Cambridge University Press:  13 March 2013

Markus Gahleitner
Affiliation:
Borealis Polyolefine GmbH, Linz, Austria; markus.gahleitner@borealisgroup.com
Luigi Resconi
Affiliation:
Borealis Polyolefine GmbH, Linz, Austria; luigi.resconi@borealis.com
Petar Doshev
Affiliation:
Borealis Polyolefine GmbH, Linz, Austria; petar.doshev@borealis.com
Get access

Abstract

The success of polyolefins is governed to a large extent by the development of robust and versatile catalysts offering excellent morphology control. This review highlights the major evolution steps made in the polyolefin catalyst systems in terms of productivity and possibilities to control the molecular architecture of both polypropylene and polyethylene. Starting from the initial TiCl3-types, the continuous improvement of the Ziegler-Natta catalysts in terms of performance and cost is the major factor behind their wide market penetration. On the other hand, metallocene and the other “single-site” catalysts enable an unprecedented fine-tuning of chain microstructure by ligand design. In this article, special emphasis is placed on the influence of catalyst type on polymer structure characteristics such as molecular weight distribution, stereoregularity, and comonomer distribution and, ultimately, on the end-use properties of polyolefins. It is the excellent balance among price, performance, and processability that will further strengthen the position of polyolefins as a dominant class of materials in the polymer industry.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mühlhaupt, R., Macromol. Chem. Phys. 204, 289 (2003).Google Scholar
2. Ziegler, K., Breil, H., Holzkamp, E., Martin, H., DE Patent 973626 (November 18, 1953).Google Scholar
3. Böhm, L.L., Angew. Chem. Int. Ed. 42, 5010 (2003).Google Scholar
4. Welborn, H.C., Ewen, J.A., US Patent 5,324,800 to Exxon (August 18, 1991).Google Scholar
5. Stevens, J.C., Stud. Surf. Sci. Catal. 11, 101 (1996).Google Scholar
6. Stephan, D., Organometallics 24, 2548 (2005).CrossRefGoogle Scholar
7. Natta, G., Mazzanti, G., Boschi, G., DE Patent 1293453 (December 22, 1956).Google Scholar
8. Galli, P., Veccellio, G., Prog. Polym. Sci. 26, 1287 (2001).CrossRefGoogle Scholar
9. Soga, K., Shiono, T., Prog. Polym. Sci. 22, 1503 (1997).CrossRefGoogle Scholar
10. Bartke, M., Oksman, M., Mustonen, M., Denifl, P., Macromol. Mater. Eng. 290, 250 (2005).CrossRefGoogle Scholar
11. Resconi, L., Cavallo, L., Chadwick, J., in Comprehensive Organometallic Chemistry, 3rd ed., Crabtree, R.H., Mingos, D.P., Eds. (Elsevier, Oxford, 2006), vol. 4, pp. 10051166.Google Scholar
12. Severn, J., Chadwick, J.C., Duchateau, R., Friederichs, N., Chem. Rev. 105 (11), 4073 (2005).Google Scholar
16. Stephens, C., Poon, B., Ansems, P., Chum, S., Hiltner, A., Baer, E., J. Appl. Polym. Sci. 100, 1651 (2006).Google Scholar
17. Boussie, T., Diamond, G., Goh, C., Hall, K., LaPointe, A., Leclerc, M., Vince, M., Shoemaker, J., Turner, H., Rosen, R., Stevens, J., Alfano, F., Busico, V., Cipullo, R., Talarico, G., Angew. Chem. Int. Ed. 45, 3278 (2006); see also www.dow.com/versify.Google Scholar
18. Chum, P.S., Swogger, K.W., Prog. Polym. Sci. 33, 797 (2008).Google Scholar
19. Seppälä, J., Härkonen, M., Luciani, L., Makromol. Chem. 190, 2535 (1989).Google Scholar
20. Jerschow, P., Janeschitz-Kriegl, H., Int. Polym. Proc. 12, 72 (1997).CrossRefGoogle Scholar
21. Pantani, R., Balzano, L., Peters, G.W.M., Macromol. Mater. Eng. 296, 740 (2011).Google Scholar
22. Busico, V., Cipullo, R., Prog. Polym. Sci. 26, 443 (2001).Google Scholar
23. Gahleitner, M., Bachner, C., Ratajski, E., Rohaczek, G., Neißl, W., J. Appl. Polym. Sci. 73, 2507 (1999).Google Scholar
24. Andoni, A., Chadwick, J.C., Niemantsverdriet, H.J.W., Thüne, P.C., J. Catal. 257, 81 (2008).Google Scholar
25. Garoff, T., Virkkunen, V., Jääskeläinen, P., Vestberg, T., Eur. Polym. J. 39, 1679 (2003).Google Scholar
26. Chadwick, J.C., van der Burgt, F.P.T.J., Rastogi, S., Busico, V., Cipullo, R., Talarico, G., Heere, J.J.R., Macromolecules 37, 9722 (2004).Google Scholar
27. Schöbel, A., Herdtweck, E., Parkinson, M., Rieger, B., Chem. Eur. J. 18, 4174 (2012).Google Scholar
28. Gahleitner, M., Jääskeläinen, P., Ratajski, E., Paulik, C., Reussner, J., Wolfschwenger, J., Neißl, W., J. Appl. Polym. Sci. 95, 1073 (2005).Google Scholar
29. De Rosa, C., Auriemma, F., Vollaro, P., Resconi, L., Guidotti, S., Camurati, I., Macromolecules 44, 540 (2011).Google Scholar
30. Schwager, H., Kunststoffe 82, 499 (1992).Google Scholar
31. Cecchin, G., Morini, G., Pelliconi, G., Macromol. Symp. 173, 195 (2001).Google Scholar
32. Ramsteiner, F., Kanig, G., Heckmann, W., Gruber, W., Polymer 24, 365 (1983).CrossRefGoogle Scholar
33. Grein, C., Bernreitner, K., Hauer, A., Gahleitner, M., Neißl, W., J. Appl. Polym. Sci. 87, 1702 (2003).CrossRefGoogle Scholar
34. Doshev, P., Lach, R., Lohse, G., Heuvelsland, A., Grellmann, W., Radusch, H.-J., Polymer 46, 9411 (2005).Google Scholar
35. Bouzid, D., McKenna, T.F.L., Macromol. Chem. Phys. 207, 13 (2006).Google Scholar
36. Kaminsky, W., Funck, A., Wiemann, K., Macromol. Symp. 239, 1 (2006).Google Scholar