Skip to main content Accessibility help
×
Home

Future energy, fuel cells, and solid-oxide fuel-cell technology

  • Nguyen Q. Minh (a1) and Y. Shirley Meng (a2)

Extract

According to the US Department of Energy’s Energy Infomation Administration (EIA) (International Energy Outlook 2017), world energy consumption will increase 28% between 2015 and 2040, rising from 575 quadrillion Btu (∼606 quadrillion kJ) in 2015 to 736 quadrillion Btu (∼776 quadrillion kJ) in 2040. EIA predicts increases in consumption for all energy sources (excluding coal, which is estimated to remain flat)—fossil (petroleum and other liquids, natural gas), renewables (solar, wind, hydropower), and nuclear. Although renewables are the world’s fastest growing form of energy, fossil fuels are expected to continue to supply more than three-quarters of the energy used worldwide. Among the various fossil fuels, natural gas is the fastest growing, with a projected increase of 43% from 2015 to 2040. As the use of fossil fuels increases, the EIA projects world energy-related carbon dioxide emission to grow from ∼34 billion metric tons in 2015 to ∼40 billion metric tonnes in 2040 (an average 0.6% increase per year).

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Future energy, fuel cells, and solid-oxide fuel-cell technology
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Future energy, fuel cells, and solid-oxide fuel-cell technology
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Future energy, fuel cells, and solid-oxide fuel-cell technology
      Available formats
      ×

Copyright

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed