Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-22T05:19:57.287Z Has data issue: false hasContentIssue false

Freestanding metal nanowires and macroporous materials from ionic liquids for battery applications

Published online by Cambridge University Press:  15 July 2013

Frank Endres*
Affiliation:
Clausthal University of Technology, Germany; frank.endres@tu-clausthal.de
Get access

Abstract

Ionic liquids are well suited to the electrochemical synthesis of freestanding metallic nanowires as well as macroporous metals and semiconductors. Such materials are potentially interesting for future generation Li-ion batteries. As the energy density of current Li-ion batteries barely exceeds 0.15 kWh/kg (in contrast to the 12 kWh/kg of hydrocarbons), there is a need for new anode and cathode materials if electrically driven cars are to have more than a 150 km cruising range at an affordable price. Freestanding aluminum nanowires and macroporous aluminum are easily feasible from AlCl3-based ionic liquids and show promising charge/discharge behavior even with ionic liquids as electrolytes. The challenges and the potential to make nanowires or macroporous structures of semiconductors (Si, Ge) are also briefly discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Walden, P., Bull. Acad. Sci. 8, 405 (1914).Google Scholar
Scrosati, B., Garche, J., J. Power Sources 195, 2419 (2010).CrossRefGoogle Scholar
Wen, J.W., Yu, Y., Chen, C.H., Mater. Express 2, 197 (2012).CrossRefGoogle Scholar
Han, F., Lu, A., Li, W., Prog. Chem. 24, 2443 (2012).Google Scholar
Szczech, J.R., Jin, S., Energy Environ. Sci. 4, 56 (2011).CrossRefGoogle Scholar
Stein, A., Schroden, R.C., Curr. Opin. Solid State Mater. Sci. 5, 553 (2001).CrossRefGoogle Scholar
Meng, X., Al-Salman, R., Zhao, J.P., Borissenko, N., Li, Y., Endres, F., Angew. Chem. Int. Ed. 48, 2703 (2009).CrossRefGoogle Scholar
Hurley, F.H, Wier, T.P., J. Electrochem. Soc. 98, 203 (1951).CrossRefGoogle Scholar
Gasparotto, L.H.S., Prowald, A., Borisenko, N., El Abedin, S.Z., Garsuch, A., Endres, F., J. Power Sources 196, 2879 (2011).CrossRefGoogle Scholar
Au, M., McWhorter, S., Ajo, H., Adams, T., Zhao, Y., Gibbs, J., J. Power Sources 195, 3333 (2010).CrossRefGoogle Scholar
El Abedin, S.Z., Endres, F., ChemPhysChem 13, 250 (2012).CrossRefGoogle Scholar
El Abedin, S.Z., Garsuch, A., Endres, F., Aust. J. Chem. 65, 1529 (2012).CrossRefGoogle Scholar
Taige, M.A., Hilbert, D., Schubert, T., Z. Phys. Chem. 226, 129 (2012).CrossRefGoogle Scholar
Etacheri, V., Geiger, U., Gofer, Y., Roberts, G.A., Stefan, I.C., Fasching, R., Aurbach, D., Langmuir 28, 6175 (2012).CrossRefGoogle Scholar
Song, T., Jeon, Y., Samal, M., Han, H., Park, H., Ha, J., Yi, D.K., Choi, J.M., Chang, H., Choi, Y.M., Paik, U., Energy Environ. Sci. 5, 9028 (2012).CrossRefGoogle Scholar
Borisenko, N., El Abedin, S.Z., Endres, F., J. Phys. Chem. B 110, 6250 (2006).CrossRefGoogle Scholar
Al-Salman, R., Meng, X.D., Zhao, J.P., Li, Y., Kynast, U., Lezhnina, M., Endres, F., Pure Appl. Chem. 82, 1673 (2010).CrossRefGoogle Scholar
Liu, X., Zhang, Y., Ge, D., Zhao, J.P., Li, Y., Endres, F., Phys. Chem. Chem. Phys. 14, 5100 (2012).CrossRefGoogle Scholar
Al-Salman, R., Mallet, J., Molinari, M., Fricoteaux, P., Martineau, F., Troyon, M., El Abedin, S.Z., Endres, F., Phys. Chem. Chem. Phys. 10, 6233 (2008).CrossRefGoogle Scholar
Al-Salman, R., Endres, F., J. Mater. Chem. 19, 7228 (2009).CrossRefGoogle Scholar