Skip to main content Accessibility help
×
Home

Electronic-Structure Theory of Semiconductor Quantum Dots

  • Alex Zunger

Extract

Progress made in the growth of “free-standing” (e.g., colloidal) quantum dots (see also articles in this issue by Nozik and Mićić, and by Alivisatos) and in the growth of semiconductor-embedded (“self-assembled”) dots (see also the article by Bimberg, Grundmann, and Ledentsov in this issue) has opened the door to new and exciting spectroscopic studies of quantum structures. These have revealed rich and sometimes unexpected features such as quantum-dot shape-dependent transitions, size-dependent (red) shifts between absorption and emission, emission from high excited levels, surface-mediated transitions, exchange splitting, strain-induced splitting, and Coulomb-blockade transitions. These new observations have created the need for developing appropriate theoretical tools capable of analyzing the electronic structure of 103–106-atom objects. The main challenge is to understand (a) the way the one-electron levels of the dot reflect quantum size, quantum shape, interfacial strain, and surface effects and (b) the nature of “many-particleinteractions such as electron-hole exchange (underlying the “red shift”), electron-hole Coulomb effects (underlying excitonic transitions), and electron-electron Coulomb (underlying Coulomb-blockade effects).

Interestingly, while the electronic structure theory of periodic solids has been characterized since its inception by a diversity of approaches (all-electron versus pseudopotentials; Hartree Fock versus density-functional; computational schemes creating a rich “alphabetic soup,” such as APW, LAPW, LMTO, KKR, OPW, LCAO, LCGO, plane waves, ASW, etc.), the theory of quantum nano-structures has been dominated mainly by a single approach so widely used that I refer to it as the “Standard Model”: the effective-mass approximation (EMA) and its extension to the “k · p” (where k is the wave vector and p is the momemtum). In fact, speakers at nanostructure conferences often refer to it as “theory” without having to specify what is being done. The audience knows.

Copyright

References

Hide All
1.Weller, H. and Eychmüller, A., in Semiconductor Nanoclusters, edited by Kamat, P.V. and Meisel, D., vol. 103 (Elsevier, New York, 1996) p. 5.
2.Overbeek, J.T.G., Adv. Colloid I. Sci. 15 (1982) p. 251.
3.Seifert, W., Carlsson, N., Miller, M., Pistol, M.E., Samuelson, L., and Wallenberg, L., Prog. Cryst. Growth Charact. 33 (1966) p. 423.
4.Tabuchi, M., Noda, S., and Sasaki, A., in Science and Technology of Mesoscopic Structures, edited by Namba, S., Hamaguchi, C., and Ando, T. (Springer, Tokyo, 1992) p. 379.
5.Luttinger, J.M. and Kohn, W., Phys. Rev. 97 (1955); p. 869; E.O. Kane, J. Phys. Chem. Solids 1 (1957) p. 249; M. Cardona and F.H. Pollak, Phys. Rev. 142 (1966) p. 530.
6.Kane, E.O., in Physics of III-V Compounds, edited by Willardson, R.K. and Beer, A.C., Semiconductors and Semimetals, vol. 1 (Academic Press, New York, 1966) p. 75.
7.Bastard, G., Bruin, J.A., and Ferreira, R., in Solid State Physics, edited by Turnbull, D. and Ehrenreich, H., vol. 44 (Academic Press, New York, 1991) p. 229.
8.Wang, L.W. and Zunger, A., Phys. Rev. B 54 (1996) p. 11417.
9.Wood, D.M., Gershoni, D., and Zunger, A., Europhys. Lett. 33 (1996) p. 383; D.M. Wood and A. Zunger, Phys. Rev. B 53 (1996) p. 7949.
10.Norris, D.J. and Bawendi, M.G., Phys. Rev. B 83 p. 16338.
11.Wind, O., Gindell, F., and Waggon, U., J. Lumin. 72–74 (1997) p. 300.
12.Gershoni, D., Henry, C.H., and Baraff, G.A., IEEE J. Quantum Electron. 29 (1993) p. 2433.
13.Perdew, J.P. and Zunger, A., Phys. Rev. B 23 (1981) p. 5048.
14.Zunger, A., Yeh, C.Y., Wang, L.W., and Zhang, S.B., in Int. Conf. Phys. Semicond. (World Scientific, Singapore, 1994) p. 1763; S.B. Zhang and A. Zunger, Appl. Phys. Lett. 63 (1993) p. 1399; S.B. Zhang, C.Y. Yeh, and A. Zunger, Phys. Rev. B 48 (1993) p. 11204.
15.Pryor, C., Kim, J., Wang, L.W., Williamson, A., and Zunger, A., J. Appl. Phys. 83 (5) (1998).
16.Kim, J., Wang, L.W., and Zunger, A., Phys. Rev. B (in press).
17.Fu, H. and Zunger, A., Phys. Rev. B 56 (1997) p. 1496.
18.Wang, L.W. and Zunger, A., Phys. Rev. B 51 (1995) p. 17398; H. Fu and A. Zunger, Phys. Rev. B 55 (1997) p. 1642.
19.Littau, K.A., Szajowski, P.J., Muller, A.J., Kortan, A.R., and Brus, L.E.. J. Phys. Chem. 91 (1993) p. 1224.
20.Keating, P.N., Phys. Rev. 145 (1966) p. 637.
21.Brust, D., Phillips, J.C., and Bassani, F., Phys. Rev. Lett. 9 (1962) p. 94; M.L. Cohen and T.R. Bergstresser, Phys. Rev. 141 (1966) p. 789.
22.Ren, S.Y. and Dow, J.D., Phys. Rev. B 45 (1992) p. 6492; J.P. Proot, C. Delerue, and G. Allen, Appl. Phys. Lett. 61 (1992) p. 1948.
23.Wang, L.W. and Zunger, A., J. Chem. Phys. 100 (1994) p. 2394; L.W. Wang and A. Zunger, J. Chem. Phys. 94 (1994) p. 2158.
24.Wang, L.W. and Zunger, A., in Semiconductor Nanoclusters: Studies in Surface Science and Catalysis, edited by Kamat, P.V. and Meisel, D., vol. 103 (Elsevier, New York, 1996) p. 161.
25.Franceschetti, A. and Zunger, A., Phys. Rev. Lett. 78 (1997) p. 915.
26.Franceschetti, A., Fu, H., Wang, L.W., and Zunger, A. (unpublished manuscript).
27.Wang, L.W. and Zunger, A., Phys. Rev. Lett. 73 (1994) p. 1039.
28.Chamarro, M., Gourdon, C., Lavallard, P., Lublinskaya, O., and Ekimov, A.I., Phys. Rev. B 53 (1996) p. 1336.
29.Nirmal, M., Norris, D.J., Kuno, M., Bawendi, M.G., Efros, A., and Rosen, M., Phys. Rev. Lett. 75 (1995) p. 3728; M. Nirmal, D.J. Norris, M. Kuno, M.G. Bawendi, A. Efros, and M. Rosen Phys. Rev. B 54 (1996) p. 4843; M. Nirmal, D.J. Norris, M. Kuno, M.G. Bawendi, A. Efros, and M. Rosen Phys. Rev. B 53 (1996) p. 16347.
30.Knox, R.S., Solid State Phys. 5 (1963).
31.Takagahara, T., Phys. Rev. B 47 (1993) p. 4569.
32.Mićić, O.I., Cheong, H.M., Fu, H., Zunger, A., Sprague, J.R., Mascarenhas, A., and Nozik, A.J., J. Phys. Chem. B 101 (1997) p. 4904.
33.Micic, O.I., Sprague, J., Lu, Z., and Nozik, A.J., Appl. Phys. Lett. 68 (1996) p. 3150; O.I. Mićić, C.J. Curtis, K.M. Jones, J.R. Sprague, and A.J. Nozik, J. Phys. Chem. 98 (1994) p. 4966.
34.Wang, L.W. and Zunger, A., Phys. Rev. B 53 (1996) p. 9579.
35.Murray, C.B., Norris, D.J., and Bawendi, M.G., J. Am. Chem. Soc. 115 (1993) p. 8706.
36.Fu, H., Wang, L.W., and Zunger, A., Appl. Phys. Lett. 71 (1997) p. 3433.
37.Grigoryan, G.B., Kazaryan, E.M., Efros, A.L., and Yazeva, T.V., Sov. Phys. Solid State 32 (1990) p. 1031.
38.Richard, T., Lefebre, P., Mathieu, H., and Allegre, J., Phys. Rev. B 53 (1996) p. 7287.
39.Kim, J., Wang, L.W., and Zunger, A., Phys. Rev. B Rapid Commun. 56 (1997) p. R15541.
40.Williamson, A., Fu, H., and Zunger, A., Phys. Rev. B Rapid Commun. 57 (7) (1998).

Electronic-Structure Theory of Semiconductor Quantum Dots

  • Alex Zunger

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed