Skip to main content Accessibility help

Electrical Studies of Semiconductor-Nanocrystal Colloids

  • A.P. Alivisatos


The study of nanometer-sized semiconductor crystals has been advancing at a rapid pace. Much of the interest in these materials stems from the fact that their physical and chemical properties can be systematically tuned by variation of the size, according to increasingly well-established scaling laws. This article describes colloidal semiconductor nanocrystals belonging to the II-VI and III-V families, and outlines strategies for obtaining electrical access to such dots.

If an inorganic cluster exceeds a certain size—generally in the 10s of unit cells—then it will likely possess a bonding geometry characteristic of a bulk phase. Above this critical size, the nature of the chemical bonds in the cluster remains fixed as a function of the size, but the total number of atoms—or the surface to volume ratio—changes smoothly. This leads to a slow extrapolation of the properties for ideal nanocrystals toward bulk values with increasing size, according to the scaling laws. The ability to control systematically the properties of inorganic materials by variation of size and shape is an important development with many implications for how materials should be processed and assembled.

Many scaling laws have been investigated, including the size variation of bandgap, charging energy, magnetization reversal, and melting. Study of the scaling laws reveals lessons for how to make nanocrystals. This article focuses on the properties of colloidal semiconductor nanocrystals, how to make them, and ways of gaining electrical access to them. Advances in metal, magnetic, and structural nanomaterials are also occurring. Semiconductor dots produced by other processing techniques in the articles by Bimberg, Gammon, and Tarucha in this issue.



Hide All
1.Brus, L.E., Efros, A.L., and Itoh, T., “Special Issue on Spectroscopy of Isolated and Assembled Semiconductor Nanocrystals-Introduction,” J. Lumin. 70 (V70) R7R8 (1996).
2.Weller, H., “Optical Properties Of Quantized Semiconductor Particles,” Philos. Trans. R. Soc. London, Ser. A 354 (1708) (1996) p. 757.
3.Vossmeyer, T., Reck, G., Schulz, B., et al., “Double-Layer Superlattice Structure Built Up OfCd32s14(Sch2ch(Oh)Ch3)(36)Center-Dot-4h(2)O Clusters,” J. Am. Chem. Soc. 117 (51) (1995) p. 12881.
4.Wang, Y., Harmer, M., and Herron, N., “Towards Monodisperse Semiconductor Clusters-Preparation and Characterization of Similar-to 13-Angstrom Thiophenolate-Capped CdS Clusters,” Israel J. Chem. 33 (1) (1993) p. 31.
5.Alivisatos, A.P., “Semiconductor Clusters, Nanocrystals, and Quantum Dots,” Science 271 (5251) (1996) p. 933.
6.Harfenist, S.A., Wang, Z.L., Alvarez, M.M., et al., “Highly Oriented Molecular Ag Nanocrystal Arrays,” J. Phys. Chem. 100 (33) (1996) p. 13904.
7.Whetten, R.L., Khoury, J.T., Alvarez, M.M., et al., “Nanocrystal Gold Molecules,” Adv. Mater. 8 (5) (1996) p. 428.
8.Collier, C.P., Saykally, R.J., Shiang, J.J., et al., “Reversible Tuning of Silver Quantum Dot Monolayers Through the Metal-Insulator Transition,” Science 277 (5334) (1997) p. 1978.
9.Jing, S., Gider, S., Babcock, K., et al., “Magnetic Clusters in Molecular Beams, Metals, and Semiconductors,” Science 271 (5251) (1996) p. 937.
10.McHale, J.M., Auroux, A., Perrotta, A.J., et al., “Surface Energies and Thermodynamic Phase Stability in Nanocrystalline Aluminas,” Science 277 (5327) (1997) p. 788.
11.Gleiter, H., “Nanostructured Materials,” Adv. Mater. 4 (7) (1992) p. 474.
12.Gleiter, H., “Nanostructured Materials: State of the Art and Perspectives,” Z. Metallk. 86 (2) (1995) p. 78.
13.Buffat, Ph. and Borel, J.P., “Size Effect on the Melting Temperature of Gold Particles,” Phys. Rev. A 13 (6) (1976) p. 2287.
14.Goldstein, A.N., Echer, C.M., and Alivisatos, A.P., “Melting in Semiconductor Nanocrystals,” Science 256 (5062) (1992) p. 1425.
15.Murray, C.B. , Norris, D.J. , and Bawendi, M.G., “Synthesis and Characterization of Nearly Monodisperse Cde (E = S, Se, Te) Semiconductor Nanocrystallites,” J. Am. Chem. Soc. 115 (19) (1993) p. 8706.
16.Katari, J.E.B. , Colvin, V.L. , and Alivisatos, A.P., “X-Ray Photoelectron Spectroscopy of CdSe Nanocrystals With Applications to Studies of the Nanocrystal Surface,” J. Phys. Chem. 98 (15) (1994) p. 4109.
17.Olshavsky, M.A., Goldstein, A.N., and Alivisatos, A.P., “Organometallic Synthesis if GaAs Crystallites Exhibiting Quantum Confinement,” J. Am. Chem. Soc. 112 (25) (1990) p. 9438.
18.Mićić, O.I. and Nozik, A.J., “Synthesis and Characterization of Binary and Ternary III-V Quantum Dots,” J. Lumin. 70 (V70) (1996) p. 95.
19.Guzelian, A.A., Katari, J.E.B.Kadavanich, A.V., Banin, U., Hamad, K., Juban, E., Alivisatos, A.P., Wolters, R.H., Arnold, C.C., and Heath, J.R., “Synthesis of Size-Selected, Surface-Passivated InP Nanocrystals,” J. Phys. Chem. 100 (17) (1996) p. 7212.
20.Guzelian, A.A. , Banin, U., Kadavanich, A.V., Peng, X., and Alivisatos, A.P., “Colloidal Chemical Synthesis and Characterization of InAs Nanocrystal Quantum Dots,” Appl. Phys. Lett. 69 (10) (1996) p. 1432.
21.Tolbert, S.H. and Alivisatos, A.P., “HighPressure Structural Transformations in Semiconductor Nanocrystals,” Annu. Rev. Phys. Chem. 46 (V46) (1995) p. 595.
22.Chen, C-C., Herhold, A.B., Johnson, C.S., et al., “Size Dependence of Structural Metastability in Semiconductor Nanocrystals,” Science 276 (1997) p. 398.
23.Bawendi, M.G., Steigerwald, M.L., and Brus, L.E., “The Quantu m Mechanics of Larger Semiconductor Clusters (Quantum Dots),” Annu. Rev. Phys. Chem. 41 (V41) (1990) p. 477.
24.Woggon, U., Optical Properties of Semiconductor Quantum Dots (Springer, Berlin, 1996).
25.Hines, M.A. and Guyotsionnest, P., “Synthesis an d Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals,” J. Phys. Chem. 100 (2) (1996) p. 468.
26.Peng, X.G. , Schlamp, M.C. , Kadavanich, A.V., et al., “Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals With Photostability and Electronic Accessibility,” J. Am. Chem. Soc. 119 (30) (1997) p. 7019.
27.Chan, Y.N.C., Schrock, R.R., and Cohen, R.E., “Synthesis of Single Silver Nanoclusters Within Spherical Microdomains in Block Copolymer Films,” J. Am. Chem. Soc. 114 (18) (1992) p. 7295.
28.Cummins, C.C. , Schrock, R.R., and Cohen, R.E., “Synthesis of ZnS and CdS Within Romp Block Copolymer Microdomains,” Chem. Mater. 4 (1) (1992) p. 27.
29.Antonietti, M. and Goltner, C., “Superstructures of Functional Colloids: Chemistry on the Nanometer Scale,” Angew. Chem. (in English) 36 (9) (1997) p. 910.
30.O'Regan, B. and Gratzel, M., “A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films,” Nature 353 (6346) (1991) p. 737.
31.Greenham, N.C., Peng, X.G. , and Alivisatos, A.P., “Charge Separation and Transport in Conjugated-Polymer/Semiconductor-Nanocrystal Composites Studied by Photoluminescence Quenching and Photoconductivity,” Phys. Rev. B 54 (24) (1996) p. 17628.
32.Schlamp, M., Peng, X., and Alivisatos, A.P., “Improved Efficiencies in Light Emitting Diodes Made With CdSe (CdS) Core/Shell Type Nanocrystals and a Semiconductor Polymer,” J. Appl. Phys. in press.
33.Colvin, V.L. , Schlamp, M.C., and Alivisatos, A.P., “Light-Emitting Diodes Made From Cadmium Selenide Nanocrystals and a Semiconducting Polymer,” Nature 370 (6488) (1994) p. 354.
34.Dabbousi, B.O., Bawendi, M.G., Onitsuka, O., et al., “Electroluminescence From CdSe Quantum-Dot Polymer Composites,” Appl. Phys. Lett. 66 (11) (1995) p. 1316.
35.Klein, D.L., McEuen, P.L., Katari, J.E.B., et al., “An Approach to Electrical Studies of Single Nanocrystals,” Appl. Phys. Lett. 68 (18) (1996) p. 2574.
36.Blanton, S.A., Dehestani, A., Lin, P.C., et al., “Photoluminescence of Single Semiconductor Nanocrystallites by Two-Photon Excitation Microscopy,” Chem. Phys. Lett. 229 (3) (1994) p. 317.
37.Blanton, S.A., Hines, M.A., Schmidt, M.E., et al., “Two-Photon Spectroscopy and Microscopy of II-VI Semiconductor Nanocrystals,” J. Lumin. 70 (V70) (1996) p. 253.
38.Nirmal, M., Dabbousi, B.O., Bawendi, M.G., Macklin, J.J., Trautman, J.K., Harris, T.D., and Brus, L.E., “Fluorescence Intermittency in Single Cadmium Selenide Nanocrystals,” Nature 383 (6603) (1996) p. 802.
39.Empedocles, S.A., Norris, D.J., and Bawendi, M.G., “Photoluminescence Spectroscopy of Single CdSe Nanocrystallite Quantum Dots,” Phys. Rev. Lett. 77 (18) (1996) p. 3873.
40.Klein, D.L. , Roth, R., Lim, A.K., Alivisatos, A.P., and McEuen, P., “A Single-Electron Transistor Made From a Cadmium Selenide Nanocrystal,” Nature 389 (1997) p. 699.
41.Alivisatos, A.P., Johnsson, K.P., Peng, X.G., et al., “Organization of Nanocrystal Molecules Using DNA,” Nature 382 (6592) (1996) p. 609.
42.Mirkin, C.A., Letsinger, R.L., Mucic, R.C., et al., “A DNA-Based Method for Rationally Assembling Nanoparticles Into Macroscopic Materials,” Nature p. 607.
43.Ohara, P.C., Heath, J.R., and Gelbart, W.M., “Self-Assembly of Submicrometer Rings of Particles From Solutions of Nanoparticles,” Angew. Chem. (in English) 36 (10) (1997) p. 1078.
44.Vossmeyer, T., Delonno, E., and Heath, J.R.,

Electrical Studies of Semiconductor-Nanocrystal Colloids

  • A.P. Alivisatos


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed