Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-17T09:06:43.407Z Has data issue: false hasContentIssue false

Contributions of the embedded-atom method to materials science and engineering

Published online by Cambridge University Press:  09 May 2012

Stephen M. Foiles
Affiliation:
Computational Materials Science and Engineering Department, Sandia National Laboratories, Albuquerque, NM; foiles@sandia.gov
Michael I. Baskes
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California, San Diego; mbaskes@ucsd.edu
Get access

Abstract

Many-body potentials were introduced in the early 1980s and have become a workhorse for the simulation of materials, especially metallic systems. The physical motivations for the main classes of the various many-body potentials are summarized, and the advantages of this approach are discussed. Some current examples related to grain growth, stress generation in thin films, shock loading, and nanowire deformation are presented to illustrate the continuing value of these approaches. Finally, some of the approaches that have been introduced in subsequent years are briefly described.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Daw, M.S., Foiles, S.M., Baskes, M.I., Mater. Sci. Rep. 9, 251 (1993).CrossRefGoogle Scholar
2.Carlsson, A.E., in Solid State Physics, vol. 43, Ehrenreich, H., Turnbull, R., Eds. (Academic Press, San Diego, 1990).Google Scholar
3.Stott, M.J., Zaremba, E., Phys. Rev. B 22, 1564 (1980).CrossRefGoogle Scholar
4.Nørskov, J.K., Phys. Rev. B 26, 2875 (1982).CrossRefGoogle Scholar
5.Daw, M.S., Baskes, M.I., Phys. Rev. Lett. 50, 1285 (1983).CrossRefGoogle Scholar
6.Daw, M.S., Baskes, M.I., Phys. Rev. B 29, 6443 (1984).CrossRefGoogle Scholar
7.Finnis, M.W., Sinclair, J.E., Philos. Mag. A 50, 45 (1984).CrossRefGoogle Scholar
8.Ercolessi, F., Parrinello, M., Tosatti, E., Philos. Mag. A 58 (1), 213 (1988).CrossRefGoogle Scholar
9.Holm, E.A., Foiles, S.M., Science 328 (5982), 1138 (2010).CrossRefGoogle Scholar
10.Olmsted, D., Holm, E.A., Foiles, S.M., Acta Mater. 57, 3704 (2009).CrossRefGoogle Scholar
11.Pao, C.W., Foiles, S.M., Webb, E.B., Srolovitz, D.J., Floro, J.A., Phys. Rev. Lett. 99, 036102 (2007).CrossRefGoogle Scholar
12.Chason, E., Sheldon, B.W., Freund, L.B., Floro, J.A., Hearne, S.J., Phys. Rev. Lett. 88 (15), 156103 (2002).CrossRefGoogle Scholar
13.Bringa, E.M., Caro, A., Wang, Y., Victoria, M., McNaney, J., Remington, B.A., Smith, R.F., Torralva, B.R., Van Swyhenhoven, H., Science 309, 1838 (2005).CrossRefGoogle Scholar
14.Bringa, E.M., Rosolankova, K., Rudd, R.E., Remington, B.A., Wark, J.S., Duchaineau, M., Kalantar, D.H., Hawreliak, J., Belak, J., Nat. Mater. 5, 805 (2006).CrossRefGoogle Scholar
15.Rudd, R.E., Germann, T.C., Remington, B.A., Wark, J.S., MRS Bull. 35, 999 (2010).CrossRefGoogle Scholar
16.Weinberger, C.R., Cai, W., Scripta Mater. 64 (6), 529 (2011).CrossRefGoogle Scholar
17.Greer, J.R., Nix, W.D., Phys. Rev. B 73 (24), 245410 (2006).CrossRefGoogle Scholar
18.Rao, S.I., Dimiduck, D.M., Parthasarathy, T.A., Uchic, M.D., Tang, M., Woodward, C., Acta Mater. 56, 3245 (2008).CrossRefGoogle Scholar
19.Lee, S.-W., Nix, W.D., Mater. Sci. Eng., A 527, 1903 (2010).CrossRefGoogle Scholar
20.Baskes, M.I., Phys. Rev. Lett. 59 (23), 2666 (1987).CrossRefGoogle Scholar
21.Baskes, M.I., Nelson, J.S., Wright, A.F., Phys. Rev. B 40 (9), 6085 (1989).CrossRefGoogle Scholar
22.Baskes, M.I., Phys. Rev. B 46 (5), 2727 (1992).CrossRefGoogle Scholar
23.Baskes, M.I., Modell. Simul. Mater. Sci. Eng. 5, 149 (1997).CrossRefGoogle Scholar
24.Swadener, J.G., Baskes, M.I., Nastasi, M., Phys. Rev. Lett. 89 (8), 085503 (2002).CrossRefGoogle Scholar
25.Huang, H., Ghoniem, N.M., Wong, J.K., Baskes, M.I., Modell. Simul. Mater. Sci. Eng. 3, 615 (1995).CrossRefGoogle Scholar
26.Wang, G., Van Hove, M.A., Ross, P.N., Baskes, M.I., Prog. Surf. Sci. 79, 28 (2005).Google Scholar
27.Ravelo, R., Baskes, M.I., Phys. Rev. Lett. 79, 2482 (1997).CrossRefGoogle Scholar
28.Baskes, M.I., Muralidharan, K., Stan, M., Valone, S.M., Cherne, F.J., JOM 55, 41 (2003).CrossRefGoogle Scholar
29.Pettifor, D.G., Phys. Rev. Lett. 63, 2480 (1989).CrossRefGoogle Scholar
30.Moriarty, J.A., Phys. Rev. B 42, 1609 (1990).CrossRefGoogle Scholar
31.Finnis, M.W., Prog. Mater Sci. 52, 133 (2007).CrossRefGoogle Scholar
32.Moriarty, J.A., Benedict, L.X., Glosli, J.N., Hood, R.Q., Orlikowski, D.A., Patel, M.V., Soderlind, P., Streitz, F.H., Tang, M.J., Yang, L.H., J. Mater. Res. 21 (3), 563 (2006).CrossRefGoogle Scholar
33.Gröger, R., Bailey, A.G., Vitek, V., Acta Mater. 56, 5401 (2008).CrossRefGoogle Scholar
34.Gröger, R., Racheria, V., Bassani, J.L., Vitek, V., Acta Mater. 56, 5412 (2008).CrossRefGoogle Scholar
35.Gröger, R., Vitek, V., Acta Mater. 56, 5426 (2008).CrossRefGoogle Scholar
36.Baskes, M.I., Srinivasan, S.G., Valone, S.M., Hoagland, R.G., Phys. Rev. B 75 (9), 094113 (2007).CrossRefGoogle Scholar
37.Bartók, A.P., Payne, M.C., Kondor, R., Csányi, G., Phys. Rev. Lett. 104, 136403 (2010).CrossRefGoogle Scholar