Skip to main content Accessibility help

Chemical mapping at atomic resolution using energy-dispersive x-ray spectroscopy

  • Leslie J. Allen (a1), Adrian J. D’Alfonso (a2), Bert Freitag (a3) and Dmitri O. Klenov (a4)


We review the recently introduced technique of atomic-resolution chemical mapping in scanning transmission electron microscopy (STEM) based on energy-dispersive x-ray spectroscopy. Working at the atomic level is facilitated by ultrasensitive energy-dispersive x-ray detectors in combination with Cs-correction of the STEM probe. Details of the experimental implementation are discussed, and a theoretical framework within which the measured results can be understood is described. Three case studies are presented: the analysis of specimens of GaAs and SrTiO3, as well as examination of an interface between SrTiO3 and PbTiO3. Detailed theoretical simulations of the imaging process show that the projected positions of elements in atomic columns can be directly deduced from the chemical maps. For the core shells used, the effective ionization interaction is local and generally localized in the vicinity of the atoms being ionized. The local nature of the effective ionization potential means that this is an incoherent mode of imaging, akin to Z-contrast imaging but with additional chemical information.



Hide All
1.Pennycook, S.J., in Scanning Transmission Electron Microscopy: Imaging and Analysis, Pennycook, S.J., Nellist, P.D., Eds. (Springer, NY, 2011), p. 1.
2.Allen, L.J., Findlay, S.D., Oxley, M.P., in Scanning Transmission Electron Microscopy: Imaging and Analysis, Pennycook, S.J., Nellist, P.D., Eds. (Springer, NY 2011), p. 247.
3.D’Alfonso, A.J., Freitag, B., Klenov, D., Allen, L.J., Phys. Rev. B 81, 100101R (2010).
4.Chu, M.-W., Liou, S. C., Chang, C.-P., Choa, F.-S., Chen, C.H., Phys. Rev. Lett. 104, 196101 (2010).
5.von Harrach, H.S., Dona, P., Freitag, B., Niculae, A., Rohde, M., Microsc. Microanal. 15 (Suppl. 2), 208 (2009).
6.Schlossmacher, P., Klenov, D.O., Freitag, B., von Harrach, S., Microsc. Today 18, 14 (2010).
7.Schlossmacher, P., Klenov, D.O., Freitag, B., von Harrach, S., Steinbach, A., Microsc. Anal. (Nanotechnology Supplement) 24, S5 (2010).
8.Kujawa, S., Freitag, B., Hubert, D., Microsc. Today 13, 16 (2005).
9.Freitag, B., Erni, R., Inoke, K., Stekelenburg, M., Hubert, D., Microscopy 41, 21 (2006).
10.Hawkes, P.W., Phil. Trans. R. Soc. A 367, 3637 (2009).
11.Forbes, B.D., Martin, A.V., Findlay, S.D., D’Alfonso, A.J., Allen, L.J., Phys. Rev. B 82, 104103 (2010).
12.Oxley, M.P., Allen, L.J.. Phys. Rev. B 57, 3273 (1998).
13.Allen, L.J., Findlay, S.D., Oxley, M.P., Rossouw, C.J., Ultramicroscopy 96, 47 (2003).
14.Findlay, S.D., Oxley, M.P., Pennycook, S.J., Allen, L.J., Ultramicroscopy 104, 126 (2005).
15.Hillyard, S., Loane, R.F., Silcox, J., Ultramicroscopy 49, 14 (1993).
16.Kirkland, E.J., Advanced Computing in Electron Microscopy (Plenum Press, NY, 1998).
17.Findlay, S.D., Oxley, M.P., Allen, L.J., Microsc. Microanal. 14, 48 (2006).
18.Wang, P., D’Alfonso, A.J., Findlay, S.D., Allen, L.J., Bleloch, A.L., Phys. Rev. Lett. 101, 236102 (2008).
19.Freitag, B., Klenov, D., von Harrach, H.S., D’Alfonso, A.J., Allen, L.J., Proceedings, Microscopy Conference 2011, Kiel, August-September 2011, contribution IM1.113.
20.Klenov, D., Lazar, S., Microscopy and Analysis (Asia Pacific Issue), 82, p. 3 (John Wiley, Chichester, 2011).
21.Klenov, D.O., Stemmer, S., Ultramicroscopy 106, 889 (2006).
22.Klenov, D.O., Findlay, S.D., Allen, L.J., Stemmer, S., Phys. Rev. B 76, 014111 (2007).
23.LeBeau, J.M., Findlay, S.D., Allen, L.J., Stemmer, S., Phys. Rev. Lett. 100, 206101 (2008).
24.Klenov, D., Freitag, B., von Harrach, H. S., D’Alfonso, A.J., Allen, L.J., Microsc. Microanal. 17 (Suppl. 2), 598 (2011).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed