Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-14T14:30:56.915Z Has data issue: false hasContentIssue false

Catalysis with Inorganic Membranes

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Catalytic inorganic membranes are among the most challenging and intriguing porous materials. Consisting of a thin film of mesoporous or microporous inorganic material deposited on a macroporous material, catalytic membranes are multifunctional materials that must be engineered for both chemical and physical properties. New approaches to carrying out chemical reactions are possible by tailoring the membrane catalytic activity and selectivity, permselectivity, and other thin film properties. Readers are referred to several recent reviews of inorganic membranes, in particular, Zaspalis and Burggraaf, Armor, Gellings and Bouwmeister, Hsieh, Stoukides, and Tsotsis et al.

Inorganic membranes are most conveniently classified according to pore size (see introductory article). Of particular importance is the ratio of the pore size to the molecular mean free path (MFP). Decreasing pore dimensions lead to increased selectivity with corresponding loss of permeability. Macroporous membranes have a pore size much larger than the MFP, leading to molecular (bulk) diffusion or viscous flow. Knudsen diffusion dominates in the mesoporous regime, where the pore size is comparable to the MFP. In addition, surface diffusion of the molecules along the pore walls may contribute, leading to an enhanced flux of the adsorbed species along the walls. The microporous regime is encountered when the pore size is comparable to the molecules. This regime makes possible much higher permselectivities, which depend on both molecular size and specific interactions with the solid. Finally, in dense membranes, molecular transport occurs through a solution-diffusion mechanism, which also involves specific interactions between the solute and membrane.

Type
Engineered Porous Materials
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Zaspalis, V.T. and Burggraaf, A.J., in Inorganic Membranes Synthesis. Characteristics and Applications, edited by Bhave, R.R., (Van Nostrand Reinhold, New York, 1991) p. 177.CrossRefGoogle Scholar
2.Armor, J., Appl. Catal. 9 (1989) p. 1.CrossRefGoogle Scholar
3.Gellings, R.J. and Bouwmeister, H.J.M., Catal. Today 12 (1992) p. 1.CrossRefGoogle Scholar
4.Hsieh, H.P., Catal. Rev.-Sci. Eng. 33 (1991) p. 1.CrossRefGoogle Scholar
5.Stoukides, M., Ind. Eng. Chem. Res. 27 (1988) p. 1745.CrossRefGoogle Scholar
6.Tsotsis, T.T., Minet, R.G., Champagnie, A.M., and Liu, R.K.T., in Computer-Aided Design of Catalysts, edited by Becker, E.R. and Pereira, C.J. (Marcel Dekker, New York, 1993) p. 471.Google Scholar
7.Sloot, H.J., PhD thesis, University of Twente, 1991.Google Scholar
8.Sloot, H.J., Smolders, C.A., van Swaaij, W.P.M., and Versteeg, G.E., AIChE J. 38 (1992) p. 887.CrossRefGoogle Scholar
9.Zaspalis, V.T., van Praag, W., Keizer, K., van Ommen, J.G., Ross, J.R.H., and Burggraaf, A.J., Appl Catal. 74 (1991) p. 249.Google Scholar
10.Harold, M.P., see Reference 6, p. 391.Google Scholar
11.Cini, P. and Harold, M.P., AIChE J. 37 (1991) p. 997.CrossRefGoogle Scholar
12.Cini, P., Blaha, S.R., Harold, M.P., and Venketaraman, K., J. Membr. Sci. 55 (1991) p. 199.CrossRefGoogle Scholar
13.Gryaznov, V.M., Plat. Met. Rev. 30 (1986) p. 68.Google Scholar
14.Gryaznov, V.M., Serebryannikova, O.S., Serov, Y.M., Ermilova, M.M., Karavanov, A.N., Mischenko, A.P., and Orekhova, N.V., Appl Catal. 96 (1993) p. 15.CrossRefGoogle Scholar
15.Shu, J., Grandjean, B.P.A., Ghali, E., and Kaliaguine, S., J. Membr. Sci. 77 (1993) p. 181.CrossRefGoogle Scholar
16.Li, Z.Y., Maeda, H., Kusakabe, K., Morooka, S., Anzai, H., and Akiyama, S., J. Membr. Sci. 78 (1993) p. 247.CrossRefGoogle Scholar
17.Leenaars, A.R.M., Keizer, K., and Burggraaf, A.J., J. Mater. Sci. 19 (1984) p. 1077.CrossRefGoogle Scholar
18.Leenaars, A.R.M., Keizer, K., and Burggraaf, A.J., J. Coll. Inter. Sci. 105 (1985) p. 27.CrossRefGoogle Scholar
19.Uhlhorn, R.J.R., Huis in't Veld, M.B.H.J., Keizer, K., and Burggraaf, A.J., Sci. Ceram. 14 (1987) p. 55.Google Scholar
20.Gieselmann, M.F., Anderson, M.A., Moosemiller, M.D., and Hill, C.G., J. Membr. Sci. 39 (1988) p. 285.Google Scholar
21.Keizer, K., Zaspalis, V.T., and Burggraaf, A.J., Mater. Sci. Monographs 66D (1991) p. 1511.Google Scholar
22.Zaspalis, V.T., van Praag, W., Keizer, K., van Ommen, J.G., Ross, J.R.H., and Burggraaf, A.J., J. Mater. Sci. 27 (1992) p. 1023.CrossRefGoogle Scholar
23.Uhlhorn, R.J.R., Keizer, K., and Burggraaf, A.J., J. Membr. Sci. 66 (1992) p. 259.CrossRefGoogle Scholar
24.Uhlhorn, R.J.R., Keizer, K., and Burggraaf, A.J., J. Membr. Sci. 66 (1992) p. 271.CrossRefGoogle Scholar
25.Gavalas, G.R., Megiris, C.E., and Nam, S.W., Chem. Eng. Sci. 44 (1989) p. 1829.CrossRefGoogle Scholar
26.Lin, Y.S. and Burggraaf, A.J., AIChE J. 38 (1992) p. 444.CrossRefGoogle Scholar
27.Keizer, K., Zaspalis, V.T., de Lange, R., Keizer, K., Harold, M.P., and Burggraaf, A.J., in Membrane Processes in Separation and Purification, edited by Crespo, J. and Boddeker, K. (Kluwer Academic, Dordrecht), (1994) to appear.Google Scholar
28.Tsapatsis, M. and Gavalas, G., AIChE J. 38 (1992) p. 847.CrossRefGoogle Scholar
29.Bhandarkar, M., Shelekhin, A.B., Dixon, A.G., and Ma, Y.H., J. Membr. Sci. 75 (1992) p. 221.CrossRefGoogle Scholar
30.Raich, B. and Foley, H., paper no. 27c (AIChE Meeting, St. Louis, 1993).Google Scholar
31.Raich, B. and Foley, H. (1994) to be submitted.Google Scholar
32.Uemiya, S., Matsuda, T., and Kikuchi, E., J. Membr. Sci. 56 (1991) p. 315.CrossRefGoogle Scholar
33.Edlund, D.J. et al., U.S. Patent No. 5,217,506 (1992).Google Scholar
34.Edlund, D.J. and Pledger, W.A., J. Membr. Sci. 77 (1993) p. 255.CrossRefGoogle Scholar
35.Eng, D. and Stoukides, M., Catal. Rev.-Sci. Eng. 33 (1991) p. 375.CrossRefGoogle Scholar
36.Harold, M.P., Zaspalis, V.T., Keizer, K., and Burggraaf, A.J., Chem. Eng. Sci. 48 (1993) p. 2705.CrossRefGoogle Scholar
37.Teraoka, Y., Zhang, H.M., Furukawa, S., and Yamazoe, N., Chem. Lett. (1985) p. 1743.CrossRefGoogle Scholar
38.Gur, T.M., Belzner, A., and Huggins, R.A., J. Membr. Sci. 75 (1992) p. 151.CrossRefGoogle Scholar
39.Kruidhof, H., Bouwmeester, H.J.M., van Doom, R.H.E., and Burggraaf, A.J., Solid State Ionics 63 (1993) p. 816.CrossRefGoogle Scholar
40.Hazbun, E.A., U.S. Patent No. 4,287,071 (1989).Google Scholar
41.Bielanski, A. and Haber, J., Oxygen in Catalysis (Marcel Dekker, New York, 1991).Google Scholar
42.Di Cosimo, R., Burrington, J.D., and Grasselli, R.K., J. Catal. 102 (1986) p. 234.CrossRefGoogle Scholar
43.Omata, K., Hashimoto, S., Tominaga, H., and Fujimoto, K., Appl. Catal. 52 (1989) p. L1.CrossRefGoogle Scholar
44.Mazanec, T.I. and Cable, T.L., U.S. Patent No. 4,802,958 (1989).Google Scholar
45.Tsai, C.Y., Dixon, A.G., Ma, Y.H., and Moser, W.R., paper no. 27d (AIChE Meeting, St. Louis, 1993).Google Scholar
46.Agarwalla, S. and Lund, C.R.F., J. Membr. Sci. 70 (1992) p. 129.DCrossRefGoogle Scholar
47.Bernstein, L.A. and Lund, C.R.F., J. Membr. Sci. 77 (1993) p. 155.CrossRefGoogle Scholar
48.Harold, M.P., Zaspalis, V.T., Keizer, K., and Burggraaf, A.N., paper presented at 1992 North American Membrane Conference (Lexington, Kentucky, 1992).Google Scholar
49.Zaspalis, V.T., PhD thesis, University of Twente, 1990.Google Scholar
50.Zaspalis, V.T., van Praag, W., Keizer, K., van Ommen, J.G., Ross, J.R.H., and Burggraaf, A.J., Appl. Catal. 74 (1991) p. 205.Google Scholar
51.Zaspalis, V.T., van Praag, W., Keizer, K., van Ommen, J.G., Ross, J.R.H., and Burggraaf, A.J., Appl. Catal. 74 (1991) p. 235.Google Scholar
52.Reyes, S.C., Iglesia, E., and Kelkar, C.P., Chem. Eng. Sci. 48 (1993) p. 264.CrossRefGoogle Scholar