Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T01:54:34.541Z Has data issue: false hasContentIssue false

Beyond “Smart-Cut®” Recent Advances in Layer Transfer for Material Integration

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

An integrated substrate, consisting of more than one material or material structure, is highly desirable for optimizing performance of multiple-device types on a single chip or for growing high-quality heteroepitaxial films on compliant substrates. A typical integrated substrate contains a stack of thin layers of similar or dissimilar materials that are either amorphous, or poly- or single-crystalline with a variety of lattice constants or crystallographic orientations. Partially or fully processed device layers can also be transferred onto a desired substrate where the transferred device layer can be further processed on the opposite side of its original surface. In this article, we focus on issues related to layer transfer for material integration.

Layer transfer from a hydrogen (H)-implanted wafer onto a desired substrate by wafer bonding and layer splitting (the so-called “Smart-Cut®” method) is an attractive approach to prepare integrated materials, such as-silicon-on-insulator (SOI), SiC or GaAs on oxidized silicon, and Ge on glass.

Type
Siucon-on-Insulator Technology
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bruel, M., Electron. Lett. 31 (1995) p. 1201.CrossRefGoogle Scholar
2.Di Cioccio, L., Le Tiec, Y., Letertre, F., Jaussaud, C., and Bruel, M., Electron. Lett. 32 (12) (1996) p. 1144.CrossRefGoogle Scholar
3.Jalaguier, E., Aspar, B., Pocas, S., Michaud, J.F., Zussy, M., Papon, A.M., and Bruel, M., Electron. Lett. 34 (4) (1998) p. 408.CrossRefGoogle Scholar
4.Tong, Q-Y., Gutjahr, K., Hopfe, S., Gösele, U., and Lee, T-H., Appl. Phys. Lett. 70 (1997) p. 1390.CrossRefGoogle Scholar
5.Weldon, M.K., Marsico, V.E., Chabal, Y.J., Agarwal, A., Eaglesham, D.J., Sapjeta, J., Brown, W.L., Jacobson, D.C., Caudano, Y., Christman, S.B., and Chaban, E.E., in Proc. Fourth Int. Symp. on Semiconductor Wafer Bonding: Science, Technology and Applications, vol. 97–36 (Electrochemical Society, Pennington, NJ, 1998) p. 229.Google Scholar
6.Tong, Q-Y., Lee, T-H., Huang, L-J., Chao, Y-L., Kim, W.J., Scholz, R., Tan, T-Y., and GSsele, U., Proc. Fourth Int. Symp. on Semiconductor Wafer Bonding: Science, Technology and Applications vol. 97–36, edited by Grosele, S.H., Baumgart, H., Abe, T., Hunt, C., and Iyer, S. (Electrochemical Society, Pennington, NJ, 1998) p. 521.Google Scholar
7.Bruel, M., U.S. Patent No. 5,374,564 (December 20, 1994).CrossRefGoogle Scholar
8.Tong, Q-Y., Scholtz, R., Gösele, U., Lee, T-H., Huang, L-J., Chao, Y-L., and Tan, T-Y., Appl. Phys. Lett. 72 (1) (1998) p. 49.CrossRefGoogle Scholar
9.Van der Walle, C.G., Phys. Rev. B 49 (1994) p. 4579.CrossRefGoogle Scholar
10.Pearton, S.J., Corbett, J.W., and Shi, T.S., Appl. Phys. A 43 (1987) p. 153.CrossRefGoogle Scholar
11.Cerofolini, G.F., Balboni, R., Bisero, D., Corni, F., Frabboni, S., Ottaviani, G., Tonini, R., Brusa, R.S., Zecca, A., Ceschini, M., Giebel, G., and Pavesi, L., Phys. Status Solidi A 150 (1995) p. 539.CrossRefGoogle Scholar
12.Tong, Q-Y., Huang, L-J., Chao, Y-L., Ploessl, A., and Gösele, U., in Proc. 1998 IEEE Int. SOI Conf. (October 1998) p. 143.Google Scholar
13.Denteneer, P.J.H., Van der Walle, C.G., and Pantelides, S.T., Phys. Rev. B 39 (1989) p. 10809.CrossRefGoogle Scholar
14.Borenstein, J.T., Corbett, J.W., and Pearton, S.J., J. Appl. Phys. 73 (1993) p. 2751.CrossRefGoogle Scholar
15.Hess, G., Parkinson, P., Gong, B., Xu, Z., Lim, D., Downer, M., John, S., Banerjee, S., and Ekerdt, J.G., Appl. Phys. Lett. 71 (1997) p. 2184.CrossRefGoogle Scholar
16.Bower, R.W., LeBoeuf, L., and Li, Y.A., Il Nuovo Cimento 19, D, N. 12 (1997) p. 1871.Google Scholar
17.Marwick, A.D., Oehrlein, G.S., and Wittmer, M., Appl. Phys. Lett. 59 (2) (1991) p. 198.CrossRefGoogle Scholar
18.Agarwal, A., Haynes, T.E., Venezia, V.C., Holland, O.W., and Eaglesham, D.J., Appl. Phys. Lett. 72 (9) (1998) p. 1086.CrossRefGoogle Scholar
19.Tong, Q-Y., Lee, T-H., Huang, L-J., Chao, Y-L., and Gösele, U., Electron. Lett. 34 (1998) p. 407.CrossRefGoogle Scholar
20.Freund, L.B., Appl. Phys. Lett. 70 (1997) p. 3519.CrossRefGoogle Scholar
21.Huang, L-J., Tong, Q-Y., Lee, T-H., Chao, Y-L., and Gösele, U., in Proc. 8th Int. Symp. Silicon Materials Science and Technology, vol. 98–1, edited by Huff, H.R., Tsuya, H., and Gösele, U. (Electrochemical Society, Pennington, NJ, 1998) p. 1373.Google Scholar
22.Bower, R.W. and Li, Y.A., to be published.Google Scholar
23.Tong, Q-Y., Lee, T-H., Huang, L-J., Chao, Y-L., and Gösele, U., to be published.Google Scholar
24.Bower, R.W., Ismail, M.S., and Roberds, B.E., Appl. Phys. Lett. 28 (1993) p. 2485.Google Scholar
25.Bower, R.W., Ismail, M.S., U.S. Patent No. 5,503,704 (1996).Google Scholar
26.Li, Y.A. and Bower, R.W., Jpn. J. Appl. Phys. 37 (3) (1998) p. 737.CrossRefGoogle Scholar
27.Bower, R.W. and Li, Y.A., in Proc. SPIE, Vol. 3184 (1997) p. 2.CrossRefGoogle Scholar
28.Li, Y.A. and Bower, R.W., Jpn. J. Appl. Phys. In press.Google Scholar
29.Auberton-Hervd, A. J., Bruel, M., Aspar, B., Maleville, C., and Moriciau, H., Smart-Cut®: IEICE Trans. Electron., vol. E80-C.3, March 1997.Google Scholar
30.Bower, R.W., Patent Applied for 1997.Google Scholar