Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T18:30:24.114Z Has data issue: false hasContentIssue false

Assembling Photo- and Electroresponsive Molecules and Nano-Objects

Published online by Cambridge University Press:  31 January 2011

Get access

Extract

The self-assembly of small molecules into large, functional nanostructures has led to the construction of supramolecular systems, both in solution and on solid substrates, with defined dimensions that display unique properties through collective interactions, much like natural systems. In this article, we show how one assembles photo- and electroluminescent molecules through coordination chemistry for the purpose of producing novel materials that can be used for displays and lighting applications. In a stepwise process, we discuss the design and synthesis of the components, their spectroscopic behavior, and finally the properties arising from the assembly. We then move from molecules to more complex systems such as zeolite L nano-objects that can be used as nanocontainers and functionalized in different ways. We show how it is possible to organize rods of micron length in a geometrically controlled manner in solution and on surfaces. The assemblies are built by coordinative bonds and are luminescent materials that can be constructed from fluorescent building blocks, with potential applications as optoelectronic materials, in analogy to their molecular counterparts.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Whitesides, G.M., Grzybowski, B., Science 295, 2418 (2002); J.D. Badjic et al., Acc. Chem. Res. 38, 723 (2004).CrossRefGoogle Scholar
2.Lehn, J.-M., Angew. Chem. Int. Ed. 27, 89 (1988); D.J. Cram, Angew. Chem. Int. Ed. 27, 1009 (1988); C.J. Pederson, Angew. Chem. Int. Ed. 27, 1021 (1988).CrossRefGoogle Scholar
3.Hurst, S.J., Payne, E.K., Qin, L.D., Mirkin, C.A., Angew. Chem. Int. Ed. 45, 2672 (2006).CrossRefGoogle Scholar
4.Clark, T.D. et al., J. Am. Chem. Soc. 123, 7677 (2001).CrossRefGoogle Scholar
5.Boncheva, M., Bruzewicz, D.A., Whitesides, G.M., Pure Appl. Chem. 75, 621 (2003); G.M. Whitesides, M. Boncheva, Proc. Natl. Acad. Sci. USA 99, 4769 (2002); N.B. Bowden, M.Weck, I.S. Choi, G.M. Whitesides, Acc. Chem. Res. 34, 231 (2001).CrossRefGoogle Scholar
6.Müllen, K., Scharf, U., Eds., Organic Light-Emitting Devices (Wiley-VCH, Weinheim, 2005); E.F. Schubert, Light-Emitting Diodes (Cambridge University Press, Cambridge, UK, 2003).CrossRefGoogle Scholar
7. For previous work from our group, see, for example, Welter, S., Brunner, K., Hofstraat, J.W., De Cola, L., Nature 421, 54 (2003); R.T. Wegh et al., Proc. SPIE 5519 (2004); E.A. Plummer et al., Adv. Funct. Mater. 15, 281 (2005).CrossRefGoogle Scholar
8.Žukauskas, A., Shur, M.S., Gaska, R., MRS Bull. 26 (10), 764 (2001); B.W. D'Andrade, S.R. Forrest, Adv. Mater. 16, 1585 (2004); E.F. Schubert, J.K. Kim, Science 308, 1274 (2005).CrossRefGoogle Scholar
9.Sun, Y. et al., Nature 440, 908 (2006); P.-T. Chou, Y. Chi, Chem. Eur. J. 13, 380 (2007); H. Yersin, Top. Curr. Chem. 241, 1 (2004); B.W. D'Andrade, S.R. Forrest, Adv. Mater. 16, 1585 (2004); M.A. Baldo, Phys. Rev. B 66, 14422 (1999); M.A. Baldo et al., Nature 395, 151 (1998).CrossRefGoogle Scholar
10.Deng, L. et al., Chem. Mater. 18, 386 (2006); X.-Y. Wang, R.N. Prabhu, R.H. Schmehl, M. Weck, Macromolecules 39, 3140 (2006).CrossRefGoogle Scholar
11.Coppo, P. et al., Angew. Chem. Int. Ed. 44, 1806 (2005).CrossRefGoogle Scholar
12.Kottas, G.S., Mehlstäubl, M., Fröhlich, R., De Cola, L., Eur. J. Inorg. Chem. (2007) in press.CrossRefGoogle Scholar
13.Welter, S. et al., Coord. Chem. Rev. 249, 1360 (2005).CrossRefGoogle Scholar
14.Ulman, A., An Introduction to Ultrathin Organic Films: From Langmuir–Blodgett to Self-Assembly (Academic Press, San Diego, 1991); A. Ulman, Chem. Rev. 96, 1533 (1996).Google Scholar
15.Calzaferri, G., Huber, S., Maas, H., Minkowski, C., Angew. Chem. Int. Ed. 42, 3732 (2003).CrossRefGoogle Scholar
16.Ruiz, A.Z., Li, H., Calzaferri, G., Angew. Chem. Int. Ed. 45, 5282 (2006).CrossRefGoogle Scholar
17.Yoon, K.B., Acc. Chem. Res. 40, 29 (2007).CrossRefGoogle Scholar
18.Popović, Z., Otter, M., Calzaferri, G., De Cola, L., Angew. Chem. Int. Ed. (2007) in press.Google Scholar
19.Popović, Z., Busby, M., Huber, S., Calzaferri, G., Cola, L. De (2007) submitted.Google Scholar
20.Huber, S., Calzaferri, G., Angew. Chem. Int. Ed. 43, 6738 (2004).CrossRefGoogle Scholar
21.Yoon, K.B., Chem. Rev. 93, 321 (1993).CrossRefGoogle Scholar
22.Albuquerque, R.Q., Popović, Z., De Cola, L., Calzaferri, G., Chem. Phys. Chem. 7, 1050 (2006).CrossRefGoogle Scholar
23.Bossart, O., De Cola, L., Welter, S., Calzaferri, G., Chem. Eur. J. 10, 5771 (2004).CrossRefGoogle Scholar
24.Huber, S., Calzaferri, G., Proc. SPIE 6197, 619708 (2006); H. Li, A. Devaux, A. Zabala Ruiz, G. Calzaferri, Proc. SPIE 6195, 61951G (2006); Y. Wada, M. Sato, Y. Tsukahara, Angew. Chem. Int. Ed. 45, 1925 (2006).CrossRefGoogle Scholar