Skip to main content Accessibility help

Applications of Electron Microscopy in Collaborative Industrial Research


The transmission electron microscope (TEM) is one of the most useful tools available to the materials scientist. Yet both the complexity and expense of the equipment, and the huge investment in time necessary to become proficient in specimen preparation and image acquisition and analysis, mean that it is difficult for most industrial institutions to maintain a state-of-the-art TEM facility. How can industry overcome this problem? One solution is to set up a collaboration with a university, an industrial partner, or a government research laboratory. Such collaborations can be extremely valuable to the company, which gains access to microscopes, specimen-preparation equipment and the expertise of professional microscopists, and to the research laboratory, which benefits from the industrial perspective and the private sector's proficiency in materials preparation and processing.

Such collaborations exist, and they can produce excellent results. In this article, we present three case studies in which successful collaboration has occurred between industry and one of the Department of Energy's scientific user facilities, the National Center for Electron Microscopy (NCEM-see sidebar). Our aim is not only to describe results that we hope will be of scientific interest but also to encourage industrial researchers to consider collaborations with institutes such as NCEM.



Hide All
1.Binasch, G., Grimberg, P., Saurenbach, F., and Zinn, W., Phys. Rev. B 39 (1989) p. 4828.
2.Baibich, M.N., Broto, J.M., Fert, A., Van Dau, F. Nguyen, Petroff, F., Etienne, P., Creuzet, G., Friederich, A., and Chazelas, J., Phys. Rev. Lett. 61 (1988) p. 2472.
3.Parkin, S.S.P., Fan, S., More, N., and Roche, K.P., Phys. Rev. Lett. 64 (1990) p. 2304.
4.Parkin, S.S.P., Phys. Rev. Lett. 67 (1991) p. 3598.
5.Parkin, S.S.P., Farrow, R.F.C., Marks, R.F., Cebollada, A., Harp, G.R., and Savoy, R.J., Phys. Rev. Lett. 72 (1994) p. 3718.
6.Thangaraj, N., Krishnan, K.M., Farrow, R.F.C., Marks, R.F., Cebollada, A., Parkin, S.S.P., presented at the International Colloquium on Magnetic Films and Surfaces, Dusseldorf, September 1994.
7.Thangaraj, N., Krishnan, K.M., and Farrow, R.F.C., Scripta Met. et Mater. 33 (1995) p. 1667.
8.Aurivillius, B., Ark. Kemi 1 (54) (1949) p. 463.
9.Aurivillius, B., Ark. Kemi 1 (58) (1950) p. 499.
10.Aurivillius, B., Ark. Kemi 2 (37) (1950) p. 519.
11.Smolenskii, G.A., Isupov, V.A., and Agranovskaya, A.J., Fiz. Tverdogo Tela 1 (1959) p. 169 [translation: Sov. Phys. Solid State 1 (1959) p. 149].
12.Subbarao, E.C., J. Phys. Chem. Solids 23 (1962) p. 665.
13.Brinker, C.J. and Scherer, G.W., Sol-gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, Inc., 1990).
14.McMillan, L.D., Huffman, M., Roberts, T.L., Scott, M.C., and De Araujo, C.A. Paz, Integr. Ferroel. 4 (1994) p. 319.
15.Nakamura, S., Mukai, T., and Senoh, M., Appl. Phys. Lett. 64 (1994) p. 1687.
16.Ponce, F.A., Major, J.S. Jr., Piano, W.E., and Welch, D.F., Appl. Phys. Lett. 65 (1994) p. 2302.
17.Amano, H., Sawaki, N., Akasaki, I., and Toyoda, Y., Appl. Phys. Lett. 48 (1986) p. 353.
18.Lester, S.D., Ponce, F.A., Craford, M.G., and Steigerwald, D.A., Appl. Phys. Lett. 66 (1995) p. 1249.
19.Ponce, F.A., Northrup, J.E., Major, J.S. Jr., Piano, W.E., and Welch, D.F., unpublished manuscript.
20.Ponce, F.A., Fertitta, K.G., Holmes, A.L., Ciuba, F.J., and Dupuis, R.D., unpublished manuscript.
21.Ponce, F.A., Krusor, B.S., Major, J.S. Jr., Piano, W.E., and Welch, D.F., Appl. Phys. Lett. 67 (1995) p. 410.
22.Ponce, F.A., van de Walle, C.G., and Northrup, J.E., Phys. Rev. B in press.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed