Skip to main content Accessibility help

Alloy design for mechanical properties: Conquering the length scales

  • Irene J. Beyerlein (a1), Shuozhi Xu (a2), Javier Llorca (a3), Jaafar A. El-Awady (a4), Jaber R. Mianroodi (a5) and Bob Svendsen (a6)...


Predicting the structural response of advanced multiphase alloys and understanding the underlying microscopic mechanisms that are responsible for it are two critically important roles that modeling plays in alloy development. The demonstration of superior properties of an alloy, such as high strength, creep resistance, high ductility, and fracture toughness, is not sufficient to secure its use in widespread applications. Still, a good model is needed to take measurable alloy properties, such as microstructure and chemical composition, and forecast how the alloy will perform in specified mechanical deformation conditions, including temperature, time, and rate. Here, we highlight recent achievements using multiscale modeling in elucidating the coupled effects of alloying, microstructure, and mechanism dynamics on the mechanical properties of polycrystalline alloys. Much of the understanding gained by these efforts relies on the integration of computational tools that vary over many length scales and time scales, from first-principles density functional theory, atomistic simulation methods, dislocation and defect theory, micromechanics, phase-field modeling, single crystal plasticity, and polycrystalline plasticity.



Hide All
1.Ashby, M.F., Cebon, D., J. Phys. IV 3, C71 (1993).
2.Hall, E.O., Proc. Phys. Soc. Lond. 64, 747 (1951).
3.Petch, N.J., J. Iron Steel Inst. Lond. 173, 25 (1953).
4.Hume-Rothery, W., Powell, H.M., Z. Kristallogr. 91, 23 (1935).
5.Nie, J., Wang, Y., MRS Bull . 44 (4), 281 (2019).
6.Rodríguez-Veiga, A., Bellón, B., Papadimitriou, I., Esteban-Manzanares, G., Sabirov, I., Llorca, J., J. Alloys Compd. 757, 504 (2018).
7.Liu, H., Papadimitriou, I., Lin, F.X., Llorca, J., Acta Mater . 167, 121 (2019).
8.Liu, H., Bellón, B., Llorca, J., Acta Mater . 132, 611 (2017).
9.Esteban-Manzanares, G., Martínez, E., Segurado, J., Capolungo, L., Llorca, J., Acta Mater . 162, 189 (2019).
10.Kocks, U.F., Prog. Mater. Sci. 19, 1 (1975).
11.Santos-Güemes, R., Esteban-Manzanares, G., Papadimitriou, I., Segurado, J., Capolungo, L., Llorca, J., J. Mech. Phys. Solids 118, 228 (2018).
12.Koizumi, Y., Nukaya, T., Takeshi, S., Suzuki, S., Kurosu, S., Li, Y., Matsumoto, H., Sato, K., Tanaka, Y., Chiba, A., Acta Mater . 60, 2901 (2012).
13.Viswanathan, G.B., Shi, R., Genc, A., Vorontsov, V.A., Kovarik, L., Rae, C.M.F., Mills, M.J., Scr. Mater. 94, 5 (2015).
14.Rao, Y., Smith, T.M., Mills, M.J., Ghazisaeidi, M., Acta Mater . 148, 173 (2018).
15.Kontis, P., Li, Z., Collins, D.M., Cormier, J., Raabe, D., Gault, B., Scr. Mater. 145, 76 (2018).
16.Wang, Y., Li, J., Acta Mater. 58, 1212 (2010).
17.Beyerlein, I.J., Hunter, A., Philos. Trans. R. Soc. Lond. A 374, 20150166 (2016).
18.Mianroodi, J.R., Hunter, A., Beyerlein, I.J., Svendsen, B., J. Mech. Phys. Solids 95, 719 (2016).
19.Shi, R., McAllister, D.P., Zhou, N., Detor, A.J., DiDomizio, R., Mills, M.J., Wang, Y., Acta Mater . 164, 220 (2019).
20.Mianroodi, J.R., Shanthraj, P., Kontis, P., Gault, B., Raabe, D., Svendsen, B., under review (2018).
21.Svendsen, B., Shanthraj, P., Raabe, D., J. Mech. Phys. Solids 112, 619 (2018).
22.Kubin, L.P., Canova, G., Condat, M., Devincre, B., Pontikis, V., Bréechet, Y., Solid State Phenom . 23, 455 (1992).
23.Ghoniem, N.M., Tong, S.-H., Sun, L.Z., Phys. Rev. B Condens. Matter 61, 913 (2000).10.1103/PhysRevB.61.913
24.Zbib, H.M., Rhee, M., Hirth, J.P., Int. J. Plast. 18, 1133 (2002).
25.Weygand, D., Friedman, L.H., Van der Giessen, E., Needleman, A., Model. Simul. Mater. Sci. Eng. 10, 437 (2002).
26.El-Awady, J.A., Fan, H., Hussein, A.M., in Multiscale Materials Modeling for Nanomechanics, Weinberger, C., Tucker, G., Eds. (Springer, Cham, Switzerland, 2016), pp. 337371.
27.Hussein, A.M., Rao, S.I., Uchic, M.D., Parthasarathy, T.A., El-Awady, J.A., J. Mech. Phys. Solids 99, 146 (2017).
28.Yang, H., Li, Z., Huang, M., Comput. Mater. Sci. 75, 52 (2013).
29.Huang, M., Zhao, L., Tong, J., Int. J. Plast. 28, 141 (2012).
30.Gao, S., Fivel, M., Ma, A., Hartmaier, A., J. Mech. Phys. Solids 76, 276 (2015).
31.Tomé, C.N., Beyerlein, I.J., McCabe, R.J., Wang, J., in Engineering (ICME) for Metals: Reinvigorating Engineering Design with Science, Horstemeyer, M.F., Ed. (Wiley, Hoboken, NJ, 2018), pp. 283336.
32.Kim, N.J., Mater. Sci. Technol. 30, 1925 (2014).
33.Kulekci, M.K., Int. J. Adv. Manuf. Technol. 39, 851 (2008).
34.Suh, B., Shim, M.S., Shin, K.S., Kim, N.J., Scr. Mater 84, 1 (2014).
35.Partridge, P.G., Metall. Rev. 12, 169 (1967).
36.Yoo, M.H., Metall. Trans. A 124, 409 (1981).
37.Arul Kumar, M., Beyerlein, I.J., Tomé, C.N., J. Alloys Compd. 695, 1488 (2017).
38.Lentz, M., Klaus, M., Coelho, R.S., Schaefer, N., Schmack, F., Reimers, W., Clasuen, B., Metall. Mater. Trans. 45A, 5721 (2014).
39.Qiao, H., Agnew, S.R., Wu, P.D., Int. J. Plast. 65, 61 (2015).
40.Xu, S., Liu, T., Chen, H., Miao, Z., Zhang, Z., Zeng, W., Mater. Sci. Eng. A 565, 96 (2013).
41.Muhammad, W., Mohammadi, M., Kang, J., Mishra, R.K., Inal, K., Int. J. Plast. 70, 30 (2015).
42.Zhou, P., Beeh, E., Friedrich, H.E., J. Mater. Eng. Perform. 25, 853 (2013).
43.Zachariah, Z., Tatiparti, S.S.V., Mishra, S.K., Ramakrishnan, N., Ramamurty, U., Mater. Sci. Eng. A 572, 8 (2013).
44.Yi, S., Bolen, J., Heineman, F., Letzig, D., Acta Mater . 58, 592 (2010).
45.McDowell, D.L., in Computational Materials System Design, Shin, D., Saal, J., Eds. (Springer, Cham, Switzerland, 2018), pp. 125.
46.Keshavarz, S., Ghosh, S., Int. J. Solids Struc. 55, 17 (2015).
47.Luo, A.A., Int. Mater. Rev. 49, 13 (2004).
48.De Cooman, B.C., Estrin, Y., Kim, S.K., Acta Mater . 142, 283 (2018).
49.Bagri, A., Weber, G., Stinville, J.C., Lenthe, W.C., Pollock, T.M., Woodward, C., Ghosh, S., Metall. Mater. Trans. A 49, 5727 (2018).
50.Pinz, M., Weber, G., Lenthe, W.C., Uchic, M.D., Pollock, T.M., Ghosh, S., Acta Mater . 157, 245 (2018).
51.Beyerlein, I.J., Arul Kumar, M., in Handbook of Materials Modeling, Andreoni, W., Yip, S., Eds. (Springer Nature, Cham, Switzerland, 2018), pp. 136.
52.Simkin, B.A., Crimp, M.A., Bieler, T.R., Intermetallics 15, 55 (2007).
53.Yang, F., Yin, S.M., Li, S.X., Zhang, Z.F., Mater. Sci. Eng. A 491, 131 (2008).
54.Yin, S.M., Yang, F., Yang, X.M., Wu, S.D., Li, S.X., Li, G.Y., Mater. Sci. Eng. A 494, 397 (2008).
55.Lentz, M., Risse, M., Schaefer, N., Reimers, W., Beyerlein, I.J., Nat. Commun. 7, 11068 (2016).
56.Cheng, J., Ghosh, S., J. Mech. Phys. Solids 99, 512 (2017).
57.Abdolvand, H., Wilkinson, A.J., Acta Mater . 105, 219 (2016).
58.Ardeljan, M., Beyerlein, I.J., Knezevic, M., Int. J. Plast. 99, 81 (2017).
59.Arul Kumar, M., Beyerlein, I.J., Tomé, C.N., Acta Mater . 116, 143 (2016).
60.Kumar, M.A., Beyerlein, I.J., Lebensohn, R.A., Tome, C.N., Mater. Sci. Eng. A 706, 295 (2017).
61.Cottura, M., Appolaire, B., Finel, A., Le Bouar, Y., J. Mech. Phys. Solids 94, 473 (2016).
62.Wu, R., Sandfeld, S., J. Alloys Compd. 703, 389 (2017).
63.Wu, R., Zaiser, M., Sandfeld, S., Int. J. Plast. 95, 142 (2017).
64.Li, Z., Pradeep, K.G., Deng, Y., Raabe, D., Tasan, C.C., Nature 534, 227 (2016).
65.Xiong, T., Zhou, Y., Pang, J., Beyerlein, I.J., Ma, X., Zheng, S., Mater. Sci. Eng. A 720, 231 (2018).
66.Yuan, R., Beyerlein, I.J., Zhou, C., Acta Mater . 110, 8 (2016).
67.Beyerlein, I.J., Zhang, X., Misra, A., Annu. Rev. Mater. Res. 44, 329 (2014).
68.Beyerlein, I.J., Demkowicz, M.J., Misra, A., Uberuaga, B.P., Prog. Mater. Sci. 74, 125 (2015).
80.The Minerals, Metals & Materials Society (TMS), Modeling Across Scales: A Roadmapping Study for Connecting Materials Models and Simulations Across Length and Time Scales (Warrendale, PA, 2015).
81.The Minerals, Metals & Materials Society (TMS), Advanced Computation and Data in Materials and Manufacturing: Core Knowledge Gaps and Opportunities (Pittsburgh, 2018).


Alloy design for mechanical properties: Conquering the length scales

  • Irene J. Beyerlein (a1), Shuozhi Xu (a2), Javier Llorca (a3), Jaafar A. El-Awady (a4), Jaber R. Mianroodi (a5) and Bob Svendsen (a6)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed