Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-28T20:37:06.567Z Has data issue: false hasContentIssue false

Alloy Corrosion

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The corrosion properties of alloys are of enormous practical importance: modern life would be very different without stainless steels. Alloy corrosion is also an intriguing field of scientific study that combines electrochemical kinetics with fashionable aspects of the morphological evolution of surfaces and even a dash of ancient history, via the studies of Forty and Lechtman on “depletion gilding” practiced by Early Andeans during pre-Columbian times in South America.

The basic alloy corrosion process, as used by the metalsmiths to gold-coat artifacts, is de-alloying. This is defined as the selective electrolytic dissolution of one or more components from a metallic solid solution. For this to happen, there must be a significant difference in the equilibrium metal/metal-ion electrode potentials for the two metals, taking into account any complex ions that might be formed in the electrolyte. For example, we can expect de-alloying in Au-Cu alloys, but not in Au-Pt alloys.

De-alloying shows sharp parting limits, expressed as critical atom percentages of the more reactive component above which that component can be removed from the alloy by electrochemical dissolution in an oxidizing environment such as nitric acid. Parting limits range from about 20 at.% to 60 at.%. This concept is still used in noble metal technology to separate noble metals from base metals. For example, an alloy of 55 at.% gold and 45 at.% silver does not de-alloy, but if it is re-melted with additional silver so that the atom fraction of Ag is greater than 60%, the gold can be separated almost completely by nitric acid immersion.

Type
Corrosion Science
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Forty, A.J., Nature 282 (1979) p. 597.CrossRefGoogle Scholar
2.Lechtman, H., Sci. Am. 250 (1984) p. 56.CrossRefGoogle Scholar
3.Tammann, G., Z. Anorg. Chem. 107 (1919) p. 9; Z. Anorg. Chem. 112 (1920) p. 233; Z. Anorg. Chem. 114 (1920) p. 281.Google Scholar
4.Masing, G., Z. Anorg. Chem. 118 (1921) p. 293.CrossRefGoogle Scholar
5.Forty, A.J., Cold Bull. 14 (1981) p. 25.Google Scholar
6.Forty, A.J. and Durkin, P., Philos. Mag. A 42 (1980) p. 295.CrossRefGoogle Scholar
7.Forty, A.J. and Rowlands, G., Philos. Mag. A 43 (1981) p. 171.CrossRefGoogle Scholar
8.Durkin, P. and Forty, A.J., Philos. Mag. A 45 (1982) p. 95.CrossRefGoogle Scholar
9.Forty, A.J., in Sir Charles Frank, an Eightieth Birthday Tribute, edited by Chambers, R., Enderby, J., Keller, A., Lang, A., and Steeds, J. (Adam Hilger, Bristol, 1991) p. 164.Google Scholar
10.Sieradzki, K., J. Electrochem. Sac. 140 (1993) p. 2868.CrossRefGoogle Scholar
11.Sieradzki, K., Corderman, R.R., Shukla, K., and Newman, R.C., Philos. Mag. A 59 (1989) p. 713.CrossRefGoogle Scholar
12.Fujimoto, S., Smith, G.S., Newman, R.C., Kaye, S.P., Kheyrandish, H., and Colligon, J.S., Corns. Sci. 35 (1993) p. 51.CrossRefGoogle Scholar
13.Sieradzki, K., Movrin, D., McCall, C., and Dimitrov, N. (unpublished).Google Scholar
14.Vetter, K.J., Electrochemical Kinetics (Academic Press, New York, 1967) p. 668.Google Scholar
15.Oppenheim, I.C., Trevor, D.J., Chidsey, C.E.D., Trevor, P.L., and Sieradzki, K., Science 254 (1991) p. 687.CrossRefGoogle Scholar
16.Cammarata, R.C. and Sieradzki, K., Ann., Rev. Mater. Sci. 24 (1994) p. 215.CrossRefGoogle Scholar
17.Corcoran, S.G., Wiesler, D.G., Barker, J., and Sieradzki, K., in Neutron Scattering in Materials Science II, edited by Neumann, D.A., Russell, T.P., and Wuensch, B.J. (Mater. Res. Soc. Symp. Proc. 376, Pittsburgh, 1995) p. 377.Google Scholar
18.Corcoran, S.G., Wiesler, D.G., and Sieradzki, K., in Electrochemical Synthesis and Modification of Materials, edited by Andricacos, P.C., Corcoran, S.G., Delplancke, J.-L., Moffat, T.P., and Searson, P.C. (Mater. Res. Soc. Symp. Proc. 451, Pittsburgh, 1997) p. 93.Google Scholar
19.Angerstein-Kozlowska, H., Conway, B.E., Hamelin, A., and Stoicoviciu, L., J. Electroanal. Chem. 228 (1987) p. 429.CrossRefGoogle Scholar
20.Jusys, Z. and Bruckenstein, S., Electrochem. Solid-State Lett. 1 (1998) p. 74.CrossRefGoogle Scholar
21.Corcoran, S.G., PhD thesis, The Johns Hopkins University, 1994.Google Scholar
22.Kelly, R.G., Young, A.J., and Newman, R.C., in ASTM STP 1188: Electrochemical Impedance: Analysis and Interpretation, edited by Scully, J.R., Silverman, D.C., and Kendig, M.W. (American Society for Testing and Materials, Philadelphia, 1993) p. 94.Google Scholar
23.Berk, N.F., Phys. Rev. Lett. 58 (1987) p. 2718.CrossRefGoogle Scholar
24.Berk, N.F., Phys. Rev. A 44 (1991) p. 5069.CrossRefGoogle Scholar
25.Erlebacher, J., Sieradzki, K., and Aziz, M.J., in preparation.Google Scholar