Skip to main content Accessibility help

Advances in Chemical-Mechanical Planarization

  • Rajiv K. Singh and Rajeev Bajaj


The primary aim of this issue of MRS Bulletin is to present an overview of the materials issues in chemical–mechanical planarization (CMP), also known as chemical–mechanial polishing, a process that is used in the semiconductor industry to isolate and connect individual transistors on a chip. The CMP process has been the fastest-growing semiconductor operation in the last decade, and its future growth is being fueled by the introduction of copper-based interconnects in advanced microprocessors and other devices. Articles in this issue range from providing a fundamental understanding of the CMP process to the latest advancements in the field. Topics covered in these articles include an overview of CMP, fundamental principles of slurry design, understanding wafer–pad–slurry interactions, process integration issues, the formulation of abrasive-free slurries for copper polishing, understanding surface topography issues in shallow trench isolation, and emerging applications.



Hide All
1.Braun, A.E., Semicond. Int. 24 (November 2001) p. 51.
2.Corbett, M.A., Solid State Technol. 43 (December 2000) p. 72.
3.Shannon, V. and Smith, D.C., Semicond. Int. 24 (May 2001) p. 93.
4.Wolf, S. and Tauber, R.N., Silicon Processing for the VLSI Era: Process Technology, 2nd ed., Vol. 1 (Lattice Press, Sunset Beach, CA, 1999).
5.Steigerwald, J.M., Murarka, S.P., and Gutmann, R.J., Chemical–Mechanical Planarization of Microelectronic Materials (John Wiley & Sons, New York, 1997).
6.Sze, S.M., VLSI Technology, 2nd ed. (McGraw-Hill, New York, 1988).
7.Preston, F., J. Soc. Glass Technol. 11 2 (1927) p. 14.
8.Brown, N.J., Baker, P.C., and Maney, R.T., in Proc. SPIE Contemporary Methods of Optical Fabrication, Vol. 306 (SPIE—The International Society for Optical Engineering Bellingham, WA, 1981) p. 42.
9.Cook, L.M., J. Non-Cryst. Solids 120 (1990) p. 152.
10.Kaufman, F.B., Thompson, D.B., Broadie, R.E., Jaso, M.A., Guthrie, W.L., Pearson, D.J., and Small, M.B., J. Electrochem. Soc. 138 (11) (1991) p. 3460.
11.Lee, S.-M., Choi, W., Craciun, V., Jung, S.-H., and Singh, R.K., “Electrochemical Measurements to Understand the Dynamics of the Chemically Modified Surface Layer Formation During Copper CMP,” presented at Symposium I, Materials Research Society Meeting, San Francisco, April 2002, Paper No. I4.11.
12.Mahajan, U., Bielmann, M., and Singh, R.K., Electrochem. Solid-State Lett. 2 (1999) p. 80.
13.Bielmann, M., Mahajan, U., Singh, R.K., Agarwal, P., Mischler, S., Rosset, E., and Landolt, D., Chemical–Mechanical Polishing: Fundamentals and Challenges, edited by Babu, S.V., Danyluk, S., Krishnan, M., and Tsujimura, M. (Mater. Res. Soc. Symp. Proc. 566, Warrendale, PA, 2000) p. 97.
14. For CMP tools, see Applied Materials Inc. Home Page,; the EBARA Technologies Inc. Home Page,; and the Lam Research Home Page, (accessed July 2002).
15.Singh, R.K., Bajaj, R., Moinpour, M., and Meuris, M., eds., Chemical–Mechanical Polishing 2000: Fundamentals and Materials Issues (Mater. Res. Soc. Symp. Proc. 613, Warrendale, PA, 2001).
16.Vacassy, R., Flatt, R.J., Hofmann, H., Choi, K.S., and Singh, R.K., J. Colloid Interface Sci. 227 (2000) p. 302.
17.Kondo, S., Sakuma, N., Homma, Y., Goto, Y., Ohashi, N., Yamaguchi, H., and Owada, N., J. Electrochem. Soc. 147 (2000) p. 3907.
18.Keleher, J., Burkhard, C., Batchelor, A., Guo, L., Little, C.B., and Li, Y., 7th International Chemical–Mechanical Planarization for ULSI Multilevel Interconnection Conference (CMP-MIC Proc. 02 IMIC-700P, 2002) p. 188.
19.Singh, R.K. and Lee, S.-M. (unpublished).
20.Lee, T.H., Sci. Am. 52 (January 2002) p. 286.


Related content

Powered by UNSILO

Advances in Chemical-Mechanical Planarization

  • Rajiv K. Singh and Rajeev Bajaj


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.