Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T21:15:37.584Z Has data issue: false hasContentIssue false

Advances in Bi-Based High-Tc Superconducting Tapes and Wires

Published online by Cambridge University Press:  31 January 2011

Get access

Extract

Since the discovery of high-Tc superconductors (HTSs), especially the Bi-based oxide superconductors (Bi-HTSs) in 1989, much effort has been concentrated on the fabrication of Bi-HTS wires and tapes. Bi-HTSs are interesting materials from the viewpoint of practical applications. One of the interesting applications of Bi-HTSs is the cryogen-free conduction-cooled magnet. Besides having a high transition tem- perature (Tc), Bi-HTSs have high upper critical fields (Bc2) or high irreversibility fields (Birr) at temperatures below ∼30 K. Because ∼30 K can be efficiently main- tained by a cryocooler, a Bi-HTS magnet cooled with a cryocooler has great potential in many technological applications. Another promising application of Bi-HTSs is the high-field magnet. When the temperature is reduced to ∼5 K, Bi-HTSs show a much higher Bc2 or Birr than do conventional metallic superconductors (low-temperature superconductors, LTSs) such as Nb3Sn. This indicates that Bi-HTSs also have great potential for use in a high- field superconducting magnet if the magnet is operated at low temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ekin, J.W., Braginski, A.I., Panson, A.J., Janocko, M.A., IICapone, D.W., Zaluzec, N.J., Flandermeyer, B., de Lima, O.F., Hong, M., Kwo, J., and Liou, S.H., J. Appl. Phys. 62 (1987) p. 4821.CrossRefGoogle Scholar
2.Kase, J., Irisawa, N., Morimoto, T., Togano, K., Kumakura, H., Dietderich, D.R., and Maeda, H., Appl. Phys. Lett. 56 (1990) p. 970.CrossRefGoogle Scholar
3.Yamada, Y., Obst, B., and Flükiger, R., Supercond. Sci. Technol. 4 (1991) p. 165.CrossRefGoogle Scholar
4.Kumakura, H., Kitaguchi, H., Togano, K., Maeda, H., Shimoyama, J., Morimoto, T., Nomura, K., and Seido, M., Cryogenics 32 (1992) (ICMC Suppl.) p. 489.Google Scholar
5.Motohashi, T., Nakayama, Y., Fujita, T., Kitazawa, K., Shimoyama, J., and Kishio, K., Phys. Rev. B 59 (1999) p. 14080.CrossRefGoogle Scholar
6. HTS Cable Demonstration Project at Detroit Edison's Frisbie Station, Detroit Edison Home Page, http://www.detroitedison.com/htscable/ (accessed October 2000).Google Scholar
7.Mehta, S.P., Aversa, N., and Walker, M., IEEE Spectrum 34 (1997) p. 43.CrossRefGoogle Scholar
8.Snitchler, G., Kalsi, S.S., Manlief, M., Schwall, R.E., Sidi-Yekhlef, A., and Medeiros, R., IEEE Trans. Appl. Supercond. 9 (1999) p. 553.CrossRefGoogle Scholar
9.Kumakura, H., Kitaguchi, H., Togano, K., Wada, H., Ohkura, K., Ueyama, M., Hayashi, K., and Sato, K., Cryogenics 38 (1998) p. 639.CrossRefGoogle Scholar
10.Kumakura, H., Supercond. Sci. Technol. 13 (2000) p. 34.CrossRefGoogle Scholar
11.Kiyoshi, T., Sato, A., Wada, H., Hayashi, S., Shimada, M., and Kawate, Y., IEEE Trans. Appl. Supercond. 9 (1999) p. 559.CrossRefGoogle Scholar
12.Cowey, L., Hobl, A., Krischel, D., and Bock, J., IEEE Trans. Appl. Supercond. 10 (2000) p. 1466.CrossRefGoogle Scholar
13.Feher, S., Brandt, J., Limon, P.J., Peterson, T., Sylvester, C., Tartaglia, M., and Tompkins, J.C., IEEE Trans. Appl. Supercond. 11, in press.Google Scholar
14.Heller, R., Tasca, M., Erismann, P., Fuchs, A.M., and Vogel, M., IEEE Trans. Appl. Supercond. 10 (2000) p. 1470.CrossRefGoogle Scholar
15. American Superconductor Home Page, http://www.amsuper.com (accessed October 2000).Google Scholar
16. IGC-Advanced Superconductors, Intermagnetics General Corporation Home Page, http://www.igc.com/igc-as/default.htm (accessed October 2000).Google Scholar
17. Oxford Superconducting Technology, Oxford Instruments Home Page, http://www.oxfordinstruments. com/st/index.cfm (accessed October 2000).Google Scholar
18. Nordic Superconductor Technologies Home Page, http://www.nst.com (accessed October 2000).Google Scholar
19. Superconductors, semi-finished products/ parts, Vacuumschmelze Home Page, http://www.vacuumschmelze.de/100p_fra.htm (accessed October 2000).Google Scholar
20. BICC General Superconductors Home Page, http://www.bicc-sc.com (accessed October 2000).Google Scholar
21. High-Temperature Superconductivity, Alcatel Home Page, http://www.alcatel.com/crc/materials/cables/topic4.htm (accessed October 2000).Google Scholar
22. Australian Superconductors Home Page, http://www.superconductors.com.au (accessed October 2000).Google Scholar
23.Sato, J., Ohata, K., Okada, M., Tanaka, K., Kitaguchi, H., Kumakura, H., Kiyoshi, T., Wada, H., and Togano, K., Physica C, submitted for publication.Google Scholar
24.Ono, M., Hanai, S., Tasaki, K., Hiragishi, M., Koyanagi, K., Noma, C., Yazawa, T., Otani, Y., Kuriyama, T., Sumiyoshi, Y., Nomura, S., Dozono, Y., Maeda, H., Hikata, T., Hayashi, K., Takei, H., Sato, K., Kimura, M., and Masui, T., IEEE Trans. Appl. Supercond. 10 (2000) p. 499.CrossRefGoogle Scholar
25.Okada, M., IEEE Trans. Appl. Supercond. 10 (2000) p. 462.CrossRefGoogle Scholar
26.Morita, H., Okada, M., Tanaka, K., Sato, J., Kitaguchi, H., Kumakura, H., Togano, K., Itoh, K., and Wada, H., IEEE Trans. Appl. Supercond. 11, in press.Google Scholar
27.Grant, P.M., IEEE Trans. Appl. Supercond. 7 (1997) p. 112.CrossRefGoogle Scholar
28.Kitaguchi, H., Kumakura, H., Togano, K., Miao, H., Hasegawa, T., and Koizumi, T., IEEE Trans. Appl. Supercond. 9 (1999) p. 1794.CrossRefGoogle Scholar
29.Yamada, Y. and Hattori, T., Physica C 335 (2000) p. 78.CrossRefGoogle Scholar
30.Nemoto, Y., Miao, H., Fujii, H., Kitaguchi, H., Kumakura, H., Togano, K., and Shima, K., PhysicaC 339 (2000) p. 209.CrossRefGoogle Scholar
31.Iwasa, Y., Case Studies in Superconducting Magnets (Plenum Press, New York, 1994) p. 262.Google Scholar