Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-22T11:14:39.836Z Has data issue: false hasContentIssue false

Super high-dielectric-constant oxide films for next-generation nanoelectronics and supercapacitors for energy storage

Published online by Cambridge University Press:  11 March 2020

Orlando Auciello
Affiliation:
The University of Texas at Dallas, USA; oha120030@utdallas.edu
Geunhee Lee
Affiliation:
BTI Solutions, dba Blue Telecom Inc., USA; Geunhee.lee@btisolutions.com
Chunya Wu
Affiliation:
The University of Texas at Dallas, USA; cxw170330@utdallas.edu
Yuanning Chen
Affiliation:
MicroSol Technologies Inc., USA; Yuanningc@microSoltech.com
Jesus J. Alcantar-Peña
Affiliation:
Microtechnologies Division, Center for Engineering and Industrial Development, Mexico; jesus.alcantar@cidesi.edu.mx
Israel Mejia
Affiliation:
Microtechnologies Division, Center for Engineering and Industrial Development, Mexico; israel.mejia@cidesi.edu.mx
Elida de Obaldía
Affiliation:
Universidad Tecnológica de Panamá, Republic of Panamá; elida.deobaldia@utp.ac.pa
Get access

Abstract

Dielectrics are electrical insulator materials, polarizable by opposite displacement of positive and negative ionized atoms via electric fields across the material’s thickness. Dielectrics are used in energy-storage capacitors, as key components in modern micro-/nanoelectronics, high-frequency and mobile communication devices, and life-saving microchips and other devices such as defibrillators and pacemakers implantable in humans. A key dielectric parameter is the dielectric constant (k), which largely controls the capacitance in capacitors with nanoscale area and dielectric layer thickness. Extremely high dielectric constants (k ≥1000) were observed in oxides (e.g., La1.8Sr0.12NiO4) with relaxor/ferroelectric materials and in combined semiconducting bulk properties with highly resistive grain boundaries. Giant dielectric constant films have also been demonstrated, based on integrating relatively low-dielectric-constant oxides into nanolaminate structures (e.g., TiOx/Al2O3; TiO2/HfO2) with tailored sublayer thicknesses, interfaces, and oxygen atom distributions. This overview article addresses the science and technology of high-dielectric-constant oxide materials with different compositions and structures.

Type
Technical Feature
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

International Technology Roadmap for Semiconductors (2001), http://public.itrs.net/Files/2003ITRS/Home2003.htm.Google Scholar
Wallace, R.M., Wilk, G., MRS Bull . 27 (3), 186 (2002).CrossRefGoogle Scholar
Chen, Y., Wu, C., Riley, D., Mejia, I., Alcantar-Peña, J., Auciello, O., “Reliable High-K Dielectric Oxide-Based Nanolaminates for Next-Generation Logic Analog and Memory Semiconductor Devices,” presented at the Materials Research Society Spring Meeting, Symposium on Devices and Materials to Extend the CMOS Roadmap for Logic and Memory Applications, Session EP09-08, ALD, High K, Ge, 2D and Others, Phoenix, 2019, p. 273.Google Scholar
Robertson, J., Wallace, R.M., Mater. Sci. Eng. R Rep. 88, 1 (2014).CrossRefGoogle Scholar
Moore, G.E., Electronics 38 (8), (1965).Google Scholar
Akatsuka, K., Haga, M.-A., Ebina, Y., Osada, M., Fukuda, K., Sasaki, T., ACS Nano 3, 1097 (2009).10.1021/nn900104uCrossRefGoogle Scholar
Osada, M., Akatsuka, K., Ebina, Y., Funakubo, H., Ono, K., Takada, K., Sasaki, T., ACS Nano 4, 5225 (2010).CrossRefGoogle Scholar
Kobayashi, W., Terasaki, I., Appl. Phys. Lett. 87, 032902 (2005).10.1063/1.1997278CrossRefGoogle Scholar
Homes, C.C., Vogt, T., Shapiro, S.M., Wakimoto, S., Ramirez, A.P., Science 293, 673 (2001).10.1126/science.1061655CrossRefGoogle Scholar
Gusev, E.P., Buchanan, D.A., Cartier, E., Kumar, A., Guha, S., Callegari, A., Zafar, S., Jamison, P.C., Neumayer, D.A., Copel, M., Gribelyuk, M.A., Okorn-Schmidt, H., D’Emic, C., Kozlowski, P., Chan, K., Bojarczuk, N., Ragnarsson, L.A., Ronsheim, P., Rim, K., Fleming, R.J., Mocuta, A., Ajmera, A., IEDM Tech. Dig., 455 (2001).Google Scholar
Peláiz-Barranco, A., Calderón-Piñar, F., García-Zaldívar, O., González-Abreu, Y., IntechOpen-Open Access Peer-Reviewed Chapter (2012), doi:10.5772/52149.Google Scholar
Schlom, D., Haeni, J., MRS Bull. 27, 198 (2002).CrossRefGoogle Scholar
Li, W., Auciello, O., Premnath, R.N., Kabius, B., Appl. Phys. Lett. 96, 162907 (2010).CrossRefGoogle Scholar
Li, W., Chen, Z., Premnath, R.N., Kabius, B., Auciello, O., J. Appl. Phys. 110, 024106 (2011).CrossRefGoogle Scholar
Lee, G., Lai, B.-K., Phatak, C., Katiyar, R.S., Auciello, O., Appl. Phys. Lett. 102, 142901 (2013).CrossRefGoogle Scholar
Chung, U.C., Elissalde, C., Maglione, M., Estournès, C., Paté, M., Ganne, J.P., Appl. Phys. Lett. 92, 042902 (2008).CrossRefGoogle Scholar
Zhang, W., Li, L., Chen, X.M., J. Appl. Phys. 108, 044104 (2010).CrossRefGoogle Scholar
Wu, C., Mejia, I., Riley, D., Lee, Y., Chen, Y., “Low Temperature Sub-Nanometer Periodic Stack Dielectrics,” US Patent 62/644,169 (2018).Google Scholar
Chen, Y., Wu, C., Riley, D., Mejia, I., Alcantar-Peña, J., Auciello, O., Symposium: Devices and Materials to Extend the CMOS Roadmap for Logic and Memory Applications; Session EP09–08: ALD, High K, Ge, 2D and Others, MRS Spring Abstract book, p. 273 (2019).Google Scholar
Mondon, F., Blonkowski, S., Microelectron. Reliab. 43 (8), 1259 (2003).CrossRefGoogle Scholar
Drandova, G.I., Beall, J.M., Decker, K.D., Salzman, K.A., Proc. Int. Conf. Comp. Semicond. Manuf. Technol. 1 (2003).Google Scholar