Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-04-30T18:21:30.225Z Has data issue: false hasContentIssue false

Sum Frequency Laser Spectroscopy during Chemical Reactions on Surfaces

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The surface specificity of vibrational sum frequency generation (VSFG) spectroscopy allows one to characterize adsorbed and reacting molecules on catalyst surfaces while the catalyst functions at high pressure and high temperature. VSFG spectroscopy can be carried out in different modes, including scanning, broadband, time-resolved, and polarization-dependent, and has been applied to various active surfaces. Single-crystal and nanoparticle model catalysts have mostly been used, which are typically prepared under ultrahigh vacuum, but applications to powder materials have been reported recently. In this article, the fundamentals and technical aspects of VSFG are summarized, and its benefits are illustrated by case studies of elementary processes of heterogeneous catalysis.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Shen, Y.R., Nature 337, 519 (1989).CrossRefGoogle Scholar
2.Shen, Y.R., Surf. Sci. 299/300, 551 (1994).CrossRefGoogle Scholar
3.Hall, R.B., Russell, J.N., Miragliotta, J., Rabinowitz, P.R., in Chemistry and Physics of Solid Surfaces (Springer Series in Surface Science), R., Vanselow, R., Howe, Eds. (Springer, Berlin, 1990), vol. 22, p. 87.Google Scholar
4.Eisenthal, K.B., Chem. Rev. 96, 1343 (1996).CrossRefGoogle Scholar
5.Cremer, P.S., Su, X., Somorjai, G.A., Shen, Y.R., J. Mol. Catal. A 131, 225 (1998).CrossRefGoogle Scholar
6.Somorjai, G.A., Rupprechter, G., J. Phys. Chem. B 103, 1623 (1999).CrossRefGoogle Scholar
7.Tadjeddine, A., Rille, A. Le, Pluchery, O., Vidal, F., Zheng, W.Q., Peremans, A., Phys. Status Solidi A 175, 89 (1999).3.0.CO;2-1>CrossRefGoogle Scholar
8.Richmond, G.L., Annu. Rev. Phys. Chem. 52, 357 (2001).CrossRefGoogle Scholar
9.Buck, M., Himmelhaus, M., J. Vac. Sci. Technol. A 19, 2717 (2001).CrossRefGoogle Scholar
10.Williams, C.T., Beattie, D.A., Surf. Sci. 500, 545 (2002).CrossRefGoogle Scholar
11.Rupprechter, G., Adv. Catal. 51, 133 (2007).CrossRefGoogle Scholar
12.Cremer, P.S., McIntyre, B.J., Salmeron, M., Shen, Y.R., Somorjai, G.A., Catal. Lett. 34, 11 (1995).CrossRefGoogle Scholar
13.Guerrero-Perez, M.O., Banares, M.A., Chem. Commun., 1292 (2002).CrossRefGoogle Scholar
14.Weckhuysen, B.M., Phys. Chem. Chem. Phys. 4, 4351 (2003).CrossRefGoogle Scholar
15.Rupprechter, G., Catal. Today 126, 3 (2007).CrossRefGoogle Scholar
16.H., Knözinger, B.C., Gates, Eds., Adv. Catal. 50, 51 (2006).Google Scholar
17.Richter, L.T., Petrallimallow, T.P., Stephenson, J.C., Opt. Lett. 23, 1594 (1998).CrossRefGoogle Scholar
18.Galletto, P., Unterhalt, H., Rupprechter, G., Chem. Phys. Lett. 367, 785 (2003).CrossRefGoogle Scholar
19.Volpp, H.-R., Wolfrum, J., Applied Combustion Diagnostics, Kohse-Höinghaus, K., Jeffries, J. B., Eds. (Taylor & Francis, New York, 2001).Google Scholar
20.Bandara, A., Kubota, J., Onda, K., Wada, A., Kano, S., Domen, K., Hirose, C., J. Phys. Chem. B. 102, 5951 (1998).CrossRefGoogle Scholar
21.Bandara, A., Dobashi, S., Kubota, J., Onda, K., Wada, A., Domen, K., Hirose, C., Kano, S., Surf. Sci. 387, 312 (1997).CrossRefGoogle Scholar
22.Cremer, P.S., Stanners, C., Niemantsverdriet, J.W., Shen, Y.R., Somorjai, G.A., Surf. Sci. 328, 111 (1995).CrossRefGoogle Scholar
23.Klünker, C., Balden, M., Lehwald, S., Daum, W., Surf. Sci. 360, 104 (1996).CrossRefGoogle Scholar
24.Härle, H., Mendel, K., Metka, U., Volpp, H.R., Willms, L., Wolfrum, J., Chem. Phys. Lett. 279, 275 (1997).CrossRefGoogle Scholar
25.Dellwig, T., Rupprechter, G., Unterhalt, H., Freund, H.-J., Phys. Rev. Lett. 85, 776 (2000).CrossRefGoogle Scholar
26.Baldelli, S., Eppler, A.S., Anderson, E., Shen, Y.R., Somorjai, G.A., J. Chem. Phys. 113, 5432 (2000).CrossRefGoogle Scholar
27.Eppler, A., Rupprechter, G., Anderson, E.A., Somorjai, G.A., J. Phys. Chem. B 104, 7286 (2000).CrossRefGoogle Scholar
28.Yeganeh, M.S., Dougal, S.M., Silbernagel, B.G., Langmuir 22, 637 (2006).CrossRefGoogle Scholar
29.Kweskin, S.J., Rioux, R.M., Habas, S.E., Komvopoulos, K., Yang, P., Somorjai, G.A., J. Phys. Chem. B 110, 15920 (2006).CrossRefGoogle Scholar
30.Rupprechter, G., Phys. Chem. Chem. Phys. 3, 4621 (2001).CrossRefGoogle Scholar
31.Rupprechter, G., Dellwig, T., Unterhalt, H., Freund, H.-J., Top. Catal. 15, 19 (2001).CrossRefGoogle Scholar
32.Kung, K.Y., Chen, P., Wei, F., Rupprechter, G., Shen, Y.R., Somorjai, G.A., Rev. Sci. Instrum. 72, 1806 (2001).CrossRefGoogle Scholar
33.McCrea, K.R., Somorjai, G.A., Adv. Catal. 45, 385 (2000).Google Scholar
34.Unterhalt, H., Rupprechter, G., Freund, H.-J., J. Phys. Chem. B. 106, 356 (2002).CrossRefGoogle Scholar
35.Rupprechter, G., Unterhalt, H., Morkel, M., Galletto, P., Hu, L., Freund, H.-J., Surf. Sci. 502–503, 109 (2002).CrossRefGoogle Scholar
36.Morkel, M., Rupprechter, G., Freund, H.-J., Surf. Sci. Lett. 588, L209 (2005).CrossRefGoogle Scholar
37.Cremer, P.S., Su, X., Shen, Y.R., Somorjai, G.A., J. Am. Chem. Soc. 118, 2942 (1996).CrossRefGoogle Scholar
38.Freund, H.-J., Bäumer, M., Libuda, J., Risse, T., Rupprechter, G., Shaikhutdinov, S., J. Catal. 216, 223 (2003).CrossRefGoogle Scholar
39.Ertl, G., Knözinger, H., Weitkamp, J., Handbook of Heterogeneous Catalysis (VCH, Weinheim, 1997).CrossRefGoogle Scholar
40.Somorjai, G.A., Introduction to Surface Chemistry and Catalysis (Wiley, New York, 1994).Google Scholar
41.Chorkendorff, I., Niemantsverdriet, J.W., Concepts of Modern Catalysis and Kinetics (Wiley-VCH, Weinheim, 2003).CrossRefGoogle Scholar
42.Gruber, H.L., J. Phys. Chem. 66, 48 (1962).CrossRefGoogle Scholar
43.Freund, H.-J., Bäumer, M., Kuhlenbeck, H., Adv. Catal. 45, 333 (2000).CrossRefGoogle Scholar
44.Wolter, K., Seiferth, O., Kuhlenbeck, H., Bäumer, M., Freund, H.-J., Surf. Sci. 399, 190 (1998).CrossRefGoogle Scholar
45.Yudanov, I.V., Sahnoun, R., Neyman, K.M., Rösch, N., Hoffmann, J., Schauermann, S., Johánek, V., Unterhalt, H., Rupprechter, G., Libuda, L., Freund, H.-J., J. Phys. Chem. B. 107, 255 (2003).CrossRefGoogle Scholar
46.Rupprechter, G., Morkel, M., Freund, H.-J., Hirschl, R., Surf. Sci. 554, 43 (2004).CrossRefGoogle Scholar
47.Morkel, M., Rupprechter, G., Freund, H.-J., J. Chem. Phys. 119, 10853 (2003).CrossRefGoogle Scholar
48.Bäumer, M., Libuda, J., Neyman, K.M., Rösch, N., Rupprechter, G., Freund, H.-J., Phys. Chem. Chem. Phys. 9, 3541 (2007).CrossRefGoogle Scholar
49.Morkel, M., Kaichev, V.V., Rupprechter, G., Freund, H.-J., Prosvirin, I.P., Bukhtiyarov, V.I., J. Phys. Chem. B. 108, 12955 (2004).CrossRefGoogle Scholar
50.Schauermann, S., Hoffmann, J., Johánek, V., Hartmann, J., Libuda, J., Freund, H.-J., Angew. Chem. Int. Ed. 41, 2532 (2002).3.0.CO;2-3>CrossRefGoogle Scholar
51.Borasio, M., de la Fuente, O. Rodríguez, Rupprechter, G., Freund, H.-J., J. Phys. Chem. B Lett. 109, 17791 (2005).CrossRefGoogle Scholar
52.Borasio, M., PhD thesis, Free University, Berlin, Germany (2006).Google Scholar
53.Rupprechter, G., Unterhalt, H., Borasio, M., Morkel, M., Freund, H.-J., Annu. Rep. Max Planck Soc. (Jahrbuch), 193 (2005).Google Scholar
54.Gabasch, H., Knop-Gericke, A., Schlögl, R., Borasio, M., Weilach, C., Rupprechter, G., Penner, S., Jenewein, B., Hayek, K., Klötzer, B., Phys. Chem. Chem. Phys. 9, 533 (2007).CrossRefGoogle Scholar
55.Bandara, A., Kubota, J., Wada, A., Domen, K., Hirose, C., Appl. Phys. B 68, 573 (1999).CrossRefGoogle Scholar
56.Bandara, A., Kubota, J., Onda, K., Wada, A., Kano, S.S., Domen, K., Hirose, C., Surf. Sci. 427–428, 331 (1999).CrossRefGoogle Scholar
57.Hess, C., Wolf, M., Bonn, M., Phys. Rev. Lett. 85, 4341 (2000).CrossRefGoogle Scholar
58.Hess, C., Funk, S., Bonn, M., Denzler, D.N., Wolf, M., Ertl, G., Appl. Phys. A 71, 477 (2000).CrossRefGoogle Scholar
59.Roeterdink, W.G., Aarts, J.F.M., Kleyn, A.W., Bonn, M., J. Phys. Chem. B 108, 14491 (2004).CrossRefGoogle Scholar
60.Fournier, F., Zheng, W.Q., Carrez, S., Dubost, H., Bourguignon, B., J. Chem. Phys. 121, 4839 (2004).CrossRefGoogle Scholar
61.Symonds, J.P.R., Arnolds, H., Zhang, V.L., Fukutani, K., King, D.A., J. Chem. Phys. 120, 7158 (2004).CrossRefGoogle Scholar
62.Kubota, J., Yoda, E., Ishizawa, N., Wada, A., Domen, K., Kano, S.S., J. Phys. Chem. B 107, 10329 (2003).CrossRefGoogle Scholar
63.Sheppard, N., De La Cruz, C., Adv. Catal. 41, 1 (1996); 42, 181 (1998).CrossRefGoogle Scholar
64.Rupprechter, G., Dellwig, T., Unterhalt, H., Freund, H.-J., J. Phys. Chem. B 105, 3797 (2001).CrossRefGoogle Scholar
65.Borchert, H., Fenske, D., Kolny-Olesiak, J., Parisi, J., Al-Shamery, K., Bäumer, M., Angew. Chem., Int. Ed. 46, 2923 (2007).CrossRefGoogle Scholar