Skip to main content Accessibility help
×
Home
Hostname: page-component-768dbb666b-l8xdn Total loading time: 0.571 Render date: 2023-02-06T14:16:00.740Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Self-assembly for electronics

Published online by Cambridge University Press:  09 October 2020

Cherie R Kagan
Affiliation:
University of Pennsylvania, USA; kagan@seas.upenn.edu
Taeghwan Hyeon
Affiliation:
Center for Nanoparticle Research of the Institute for Basic Science, and School of Chemical and Biological Engineering, Seoul National University, South Korea; thyeon@snu.ac.kr
Dae-Hyeong Kim
Affiliation:
Center for Nanoparticle Research of the Institute for Basic Science, and School of Chemical and Biological Engineering, Seoul National University, South Korea; dkim98@snu.ac.kr
Ricardo Ruiz
Affiliation:
Lawrence Berkeley National Laboratory,USA; Ricardo.Ruiz@lbl.gov
Maryann C. Tung
Affiliation:
Stanford University, USA; tungmc@stanford.edu
H.-S. Philip Wong
Affiliation:
Department of Engineering, Stanford University, USA; hspwong@stanford.edu
Get access

Abstract

Self-assembly, a process in which molecules, polymers, and particles are driven by local interactions to organize into patterns and functional structures, is being exploited in advancing silicon electronics and in emerging, unconventional electronics. Silicon electronics has relied on lithographic patterning of polymer resists at progressively smaller lengths to scale down device dimensions. Yet, this has become increasingly difficult and costly. Assembly of block copolymers and colloidal nanoparticles allows resolution enhancement and the definition of essential shapes to pattern circuits and memory devices. As we look to a future in which electronics are integrated at large numbers and in new forms for the Internet of Things and wearable and implantable technologies, we also explore a broader material set. Semiconductor nanoparticles and biomolecules are prized for their size-, shape-, and composition-dependent properties and for their solution-based assembly and integration into devices that are enabling unconventional manufacturing and new device functions.

Type
Functional Materials and Devices by Self-Assembly
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This manuscript has been authored by an author at Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231 with the US Department of Energy. The United States Government retains, and the publisher, by accepting the article for publication, acknowledges, that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US Government purposes.

References

Bates, F.S., Fredrickson, G.H., Phys. Today 52, 32 (1999).CrossRefGoogle Scholar
Son, J.G., Gotrik, K.W., Ross, C.A., ACS Macro Lett. 1, 1279 (2012).CrossRefGoogle Scholar
Liu, C.-C., Han, E., Onses, M.S., Thode, C.J., Ji, S., Gopalan, P., Nealey, P.F., Macromolecules 44, 1876 (2011).CrossRefGoogle Scholar
Cheng, J.Y., Rettner, C.T., Sanders, D.P., Kim, H.-C., Hinsberg, W.D., Adv. Mater. 20, 3155 (2008).CrossRefGoogle Scholar
Ruiz, R., Kang, H., Detcheverry, F.A., Dobisz, E., Kercher, D.S., Albrecht, T.R., de Pablo, J.J., Nealey, P.F., Science (80). 321, 936 (2008).CrossRefGoogle Scholar
Wan, L., Yang, X., Langmuir 25, 12408 (2009).CrossRefGoogle Scholar
Claveau, G., Quemere, P., Argoud, M., Hazart, J., Barros, P.P., Sarrazin, A., Posseme, N., Tiron, R., Chevalier, X., Nicolet, C., Navarro, C., J. Micro Nanolithogr. MEMS MOEMS. 15, 031604 (2016).CrossRefGoogle Scholar
Doise, J., Bekaert, J., Chan, B.T., Gronheid, R., Cao, Y., Hong, S., Lin, G., Fishman, D., Chakk, Y., Marzook, T., J. Vac. Sci. Technol. B 33, 06F301 (2015).CrossRefGoogle Scholar
Bao, X.-Y., Yi, H., Bencher, C., Chang, L.-W., Dai, H., Chen, Y., Chen, P.-T.J., Wong, H.-S.P., 2011 International Electron Devices Meeting (IEEE, Washington, DC, 2011), http://ieeexplore.ieee.org/document/6131510/), pp. 7.7.17.7.4.Google Scholar
Tsai, H., Pitera, J.W., Miyazoe, H., Bangsaruntip, S., Engelmann, S.U., Liu, C.-C., Cheng, J.Y., Bucchignano, J.J., Klaus, D.P., Joseph, E.A., Sanders, D.P., Colburn, M.E., Guillorn, M.A., ACS Nano 8, 5227 (2014).CrossRefGoogle Scholar
Karageorgos, I., Ryckaert, J., Tung, M.C., Wong, H.-S.P., Gronheid, R., Bekaert, J., Karageorgos, E., Croes, K., Vandenberghe, G., Stucchi, M., Dehaene, W., Capodieci, L., Cain, J.P., Eds. (International Society for Optics and Photonics, San Jose, CA, 2016), http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2222041), vol. 9781, p. 97810N.Google Scholar
Yi, H., Bao, X.-Y., Tiberio, R., Wong, H.-S.P., Nano Lett. 15, 805 (2015).CrossRefGoogle Scholar
Jeong, S.-J., Kim, J.Y., Kim, B.H., Moon, H.-S., Kim, S.O., Mater. Today 16, 468 (2013).CrossRefGoogle Scholar
Brunner, T.A., Chen, X., Gabor, A., Higgins, C., Sun, L., Mack, C.A., Panning, E.M., Goldberg, K.A., Eds. (International Society for Optics and Photonics, San Jose, CA, 2017), http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2258660), vol. 10143, p. 101430E.Google Scholar
Gronheid, R., Boeckx, C., Doise, J., Bekaert, J., Karageorgos, I., Ruckaert, J., Chan, B.T., Lin, C., Zou, Y., Panning, E.M., Goldberg, K.A., Eds. (International Society for Optics and Photonics, San Jose, CA, 2016), http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2219876), vol. 9776, p. 97761W.Google Scholar
Wan, L., Ruiz, R., Gao, H., Patel, K.C., Albrecht, T.R., Yin, J., Kim, J., Cao, Y., Lin, G., ACS Nano 9, 7506 (2015).CrossRefGoogle Scholar
Bates, C.M., Maher, M.J., Janes, D.W., Ellison, C.J., Willson, C.G., Macromolecules 47, 2 (2014).CrossRefGoogle Scholar
Peng, Q., Tseng, Y.-C., Darling, S.B., Elam, J.W., ACS Nano 5 (6), 4600 (2011).CrossRefGoogle Scholar
Albrecht, T.R., Arora, H., Ayanoor-Vitikkate, V., Beaujour, J.-M., Bedau, D., Berman, D., Bogdanov, A.L., Chapuis, Y.-A., Cushen, J., Dobisz, E.E., Doerk, G., Gao, H., Grobis, M., Gurney, B., Hanson, W., Hellwig, O., Hirano, T., Jubert, P.-O., Kercher, D., Lille, J., Liu, Z., Mate, C.M., Obukhov, Y., Patel, K.C., Rubin, K., Ruiz, R., Schabes, M., Wan, D. Weller, Wu, T.-W., Yang, E., IEEE Trans. Magn. 51, 1 (2015).CrossRefGoogle Scholar
Yang, X., Xiao, S., Hu, W., Hwu, J., van de Veerdonk, R., Wago, K., Lee, K., Kuo, D., Nanotechnology 25, 395301 (2014).CrossRefGoogle Scholar
Wan, L., Ruiz, R., Gao, H.H., Patel, K.C., Lille, J., Zeltzer, G., Dobisz, E.A., Bogdanov, A., Albrecht, T.R., Nealey, P.F., J. Micro Nanolithogr. MEMS MOEMS 11 (3), 031405 (2012).CrossRefGoogle Scholar
Doerk, G.S., Gao, H., Wan, L., Lille, J., Patel, K.C., Chapuis, Y.-A., Ruiz, R., Albrecht, T.R., Nanotechnology 26, 085304 (2015).CrossRefGoogle Scholar
Xiong, S., Chapuis, Y.-A., Wan, L., Gao, H., Li, X., Ruiz, R., Nealey, P.F., Nanotechnology 27, 415601 (2016).CrossRefGoogle Scholar
Lane, A.P., Yang, X., Maher, M.J., Blachut, G., Asano, Y., Someya, Y., Mallavarapu, A., Sirard, S.M., Ellison, C.J., Willson, C.G., ACS Nano 11, 7656 (2017).CrossRefGoogle Scholar
Wan, L., Ruiz, R., ACS Appl. Mater. Interfaces 11, 20333 (2019).CrossRefGoogle ScholarPubMed
Bates, C.M., Seshimo, T., Maher, M.J., Durand, W.J., Cushen, J.D., Dean, L.M., Blachut, G., Ellison, C.J., Willson, C.G., Science (80), 338, 775 (2012).CrossRefGoogle Scholar
Williamson, L.D., Seidel, R.N., Chen, X., Suh, H.S., Rincon Delgadillo, P., Gronheid, R., Nealey, P.F., ACS Appl. Mater. Interfaces 8, 2704 (2016).CrossRefGoogle Scholar
Cushen, J., Wan, L., Blachut, G., Maher, M.J., Albrecht, T.R., Ellison, C.J., Willson, C.G., Ruiz, R., ACS Appl. Mater. Interfaces 7, 13476 (2015).CrossRefGoogle Scholar
Xiao, S., Yang, X., Steiner, P., Hsu, Y., Lee, K., Wago, K., Kuo, D., ACS Nano 8, 11854 (2014).CrossRefGoogle Scholar
Yang, X., Xiao, S., Hsu, Y., Wang, H., Hwu, J., Steiner, P., Wago, K., Lee, K., Kuo, D., J. Micro Nanolithogr. MEM. 13, 031307 (2014).CrossRefGoogle Scholar
Hono, K., Takahashi, Y.K., Ju, G., Thiele, J.-U., Ajan, A., Yang, X., Ruiz, R., Wan, L., MRS Bull. 43, 93 (2018).CrossRefGoogle Scholar
Reiss, P., Carrière, M., Lincheneau, C., Vaure, L., Tamang, S., Chem. Rev. 116, 10731 (2016).CrossRefGoogle Scholar
Boles, M.A., Ling, D., Hyeon, T., Talapin, D.V., Nat. Mater. 15, 141 (2016).CrossRefGoogle Scholar
Boles, M.A., Engel, M., Talapin, D.V., Chem. Rev. 116, 11220 (2016).CrossRefGoogle Scholar
Kagan, C.R., Lifshitz, E., Sargent, E.H., Talapin, D.V., Science (80), 353, aac5523 (2016).Google Scholar
Yang, J., Choi, M.K., Kim, D.-H., Hyeon, T., Adv. Mater. 28, 1176 (2016).CrossRefGoogle Scholar
Shaw, S., Silva, T.F., Bobbitt, J.M., Naab, F., Rodrigues, C.L., Yuan, B., Chang, J.J., Tian, X., Smith, E.A., Cademartiri, L., Chem. Mater. 29, 7888 (2017).Google Scholar
Hogg, C., Picard, Y., Narasimhan, A., Bain, J., Majetich, S., Nanotechnology 24 (2013), doi:10.1088/0957–4484/24/8/085303.CrossRefGoogle Scholar
Asbahi, M., Mehraeen, S., Wang, F., Yakovlev, N., Chong, K.S.L., Cao, J., Tan, M.C., Yang, J.K.W., Nano Lett. 15, 6066 (2015).CrossRefGoogle Scholar
Yi, C., Yang, Y., Liu, B., He, J., Nie, Z., Chem. Soc. Rev. 49, 465 (2020).CrossRefGoogle Scholar
Likos, C.N., Soft Matter 2, 478 (2006).CrossRefGoogle ScholarPubMed
Yun, H., Yu, J.W., Lee, Y.J., Kim, J.-S., Park, C.H., Nam, C., Han, J., Heo, T.-Y., Choi, S.-H., Lee, D.C., Lee, W.B., Stein, G.E., Kim, B.J., Chem. Mater. 31, 5264 (2019).10.1021/acs.chemmater.9b01699CrossRefGoogle Scholar
Che, J., Park, K., Grabowski, C.A., Jawaid, A., Kelley, J., Koerner, H., Vaia, R.A., Macromolecules 49, 1834 (2016).CrossRefGoogle Scholar
Chen, J., Fasoli, A., Cushen, J.D., Wan, L., Ruiz, R., Macromolecules 50, 9636 (2017).CrossRefGoogle Scholar
Watanabe, A., Kihara, N., Okino, T., Yamamoto, R., J. Photopolym. Sci. Technol. 28, 643 (2015).CrossRefGoogle Scholar
Ye, X., Zhu, C., Ercius, P., Raja, S.N., He, B., Jones, M.R., Hauwiller, M.R., Liu, Y., Xu, T., Alivisatos, A.P., Nat. Commun. 6, 10052 (2015).CrossRefGoogle Scholar
Leffler, V.B., Mayr, L., Paciok, P., Du, H., Dunin-Borkowski, R.E., Dulle, M., Förster, S., Angew. Chem. Int. Ed. 58, 8541 (2019).Google Scholar
Fafarman, A.T., Hong, S.-H., Caglayan, H., Ye, X., Diroll, B.T., Paik, T., Engheta, N., Murray, C.B., Kagan, C.R., Nano Lett. 13, 350 (2013).CrossRefGoogle Scholar
Kagan, C.R., Murray, C.B., Nat. Nanotechnol. 10, 1013 (2015).CrossRefGoogle Scholar
Lee, J.-S., Kovalenko, M. V, Huang, J., Chung, D.S., Talapin, D.V, Nat. Nanotechnol. 6, 348 (2011).CrossRefGoogle Scholar
Choi, J.-H.H., Fafarman, A.T., Oh, S.J., Ko, D.-K.K., Kim, D.K., Diroll, B.T., Muramoto, S., Gillen, G., Murray, C.B., Kagan, C.R., Gillen, J.G., Murray, C.B., Kagan, C.R., Nano Lett. 12, 2631 (2012).CrossRefGoogle Scholar
Choi, J.-H., Wang, H., Oh, S.J., Paik, T., Jo, P.S., Sung, J., Ye, X., Zhao, T., Diroll, B.T., Murray, C.B., Kagan, C.R., Science (80), 352 (2016), doi:10.1126/science.aad0371.Google Scholar
Stinner, F.S., Lai, Y., Straus, D.B., Diroll, B.T., Kim, D.K., Murray, C.B., Kagan, C.R., Nano Lett. 15, 7155 (2015).CrossRefGoogle Scholar
Liu, W., Lee, J.-S., Talapin, D.V, J. Am. Chem. Soc. 135, 1349 (2013).CrossRefGoogle Scholar
Wang, H., Butler, D.J., Straus, D.B., Oh, N., Wu, F., Guo, J., Xue, K., Lee, J.D., Murray, C.B., Kagan, C.R., ACS Nano 13, 2324 (2019).Google Scholar
Kagan, C.R., Chem. Soc. Rev. 48, 1626 (2019).CrossRefGoogle Scholar
Choi, S., Lee, H., Ghaffari, R., Hyeon, T., Kim, D.-H., Adv. Mater. 28, 4203 (2016).CrossRefGoogle Scholar
Kim, J., Ghaffari, R., Kim, D.-H., Nat. Biomed. Eng. 1, 0049 (2017).CrossRefGoogle Scholar
Rogers, J.A., Lagally, M.G., Nuzzo, R.G., Nature 477, 45 (2011).CrossRefGoogle Scholar
Son, D., Lee, J., Qiao, S., Ghaffari, R., Kim, J., Lee, J.E., Song, C., Kim, S.J., Lee, D.J., Jun, S.W., Yang, S., Park, M., Shin, J., Do, K., Lee, M., Kang, K., Hwang, C.S., Lu, N., Hyeon, T., Kim, D.-H., Nat. Nanotechnol. 9, 397 (2014).CrossRefGoogle Scholar
Kim, J., Son, D., Lee, M., Song, C., Song, J.-K., Koo, J.H., Lee, D.J., Shim, H.J., Kim, J.H., Lee, M., Hyeon, T., Kim, D.-H., Sci. Adv. 2, e1501101 (2016).CrossRefGoogle Scholar
Son, D., Chae, S.I., Kim, M., Choi, M.K., Yang, J., Park, K., Kale, V.S., Koo, J.H., Choi, C., Lee, M., Kim, J.H., Hyeon, T., Kim, D.-H., Adv. Mater. 28, 9326 (2016).CrossRefGoogle Scholar
Choi, M.K., Yang, J., Kang, K., Kim, D.C., Choi, C., Park, C., Kim, S.J., Chae, S.I., Kim, T.-H., Kim, J.H., Hyeon, T., Kim, D.-H., Nat. Commun. 6, 7149 (2015).CrossRefGoogle Scholar
Kim, J., Shim, H.J., Yang, J., Choi, M.K., Kim, D.C., Kim, J., Hyeon, T., Kim, D.-H., Adv. Mater. 29, 1700217 (2017).CrossRefGoogle Scholar
Choi, M.K., Yang, J., Kim, D.C., Dai, Z., Kim, J., Seung, H., Kale, V.S., Sung, S.J., Park, C.R., Lu, N., Hyeon, T., Kim, D.-H., Adv. Mater. 30, 1703279 (2018).CrossRefGoogle Scholar
Choi, S., Park, J., Hyun, W., Kim, J., Kim, J., Lee, Y.B., Song, C., Hwang, H.J., Kim, J.H., Hyeon, T., Kim, D.-H., ACS Nano 9, 6626 (2015).CrossRefGoogle Scholar
Park, J., Choi, S., Janardhan, A.H., Lee, S.-Y., Raut, S., Soares, J., Shin, K., Yang, S., Lee, C., Kang, K.-W., Cho, H.R., Kim, S.J., Seo, P., Hyun, W., Jung, S., Lee, H.-J., Lee, N., Choi, S.H., Sacks, M., Lu, N., Josephson, M.E., Hyeon, T., Kim, D.-H., Hwang, H.J., Sci. Transl. Med. 8, 344ra86 (2016).Google Scholar
Choi, S., Han, S.I., Jung, D., Hwang, H.J., Lim, C., Bae, S., Park, O.K., Tschabrunn, C.M., Lee, M., Bae, S.Y., Yu, J.W., Ryu, J.H., Lee, S.-W., Park, K., Kang, P.M., Lee, W.B., Nezafat, R., Hyeon, T., Kim, D.-H., Nat. Nanotechnol. 13, 1048 (2018).CrossRefGoogle Scholar
Sunwoo, S., Han, S.I., Kang, H., Cho, Y.S., Jung, D., Lim, C., Lim, C., Cha, M., Lee, S., Hyeon, T., Kim, D., Adv. Mater. Technol. 5, 2070014 (2020).CrossRefGoogle Scholar
Choi, C., Choi, M.K., Liu, S., Kim, M.S., Park, O.K., Im, C., Kim, J., Qin, X., Lee, G.J., Cho, K.W., Kim, M., Joh, E., Lee, J., Son, D., Kwon, S.-H., Jeon, N.L., Song, Y.M., Lu, N., Kim, D.-H., Nat. Commun. 8, 1664 (2017).CrossRefGoogle Scholar
Lee, J., Cho, H.R., Cha, G.D., Seo, H., Lee, S., Park, C.-K., Kim, J.W., Qiao, S., Wang, L., Kang, D., Kang, T., Ichikawa, T., Kim, J., Lee, H., Lee, W., Kim, S., Lee, S.-T., Lu, N., Hyeon, T., Choi, S.H., Kim, D.-H., Nat. Commun. 10, 5205 (2019).CrossRefGoogle Scholar
Lee, H., Choi, T.K., Lee, Y.B., Cho, H.R., Ghaffari, R., Wang, L., Choi, H.J., Chung, T.D., Lu, N., Hyeon, T., Choi, S.H., Kim, D.-H., Nat. Nanotechnol. 11, 566 (2016).CrossRefGoogle Scholar
Cho, K.W., Kim, S.J., Kim, J., Song, S.Y., Lee, W.H., Wang, L., Soh, M., Lu, N., Hyeon, T., Kim, B.-S., Kim, D.-H., Nat. Commun. 10, 4824 (2019).CrossRefGoogle Scholar
Bathe, M., Chrisey, L.A., Herr, D.J.C., Lin, Q., Rasic, D., Woolley, A.T., Zadegan, R.M., Zhirnov, V.V., Nano Futures 3, 012001 (2019).CrossRefGoogle Scholar
Gopinath, A., Rothemund, P.W.K., ACS Nano 8, 12030 (2014).CrossRefGoogle Scholar
Yan, H., Park, S.H., Finkelstein, G., Reif, J.H., LaBean, T.H., Science (80), 301 (2003).Google Scholar
Xie, T., Vora, A., Mulcahey, P.J., Nanescu, S.E., Singh, M., Choi, D.S., Huang, J.K., Liu, C.C., Sanders, D.P., Hahm, J.I., ACS Nano 10, 7705 (2016).CrossRefGoogle Scholar
Lin, Q.Y., Mason, J.A., Li, Z., Zhou, W., O'Brien, M.N., Brown, K.A., Jones, M.R., Butun, S., Lee, B., Dravid, V.P., Aydin, K., Mirkin, C.A., Science (80), 359 (2018).Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Self-assembly for electronics
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Self-assembly for electronics
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Self-assembly for electronics
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *