Skip to main content Accessibility help
Hostname: page-component-77ffc5d9c7-jlnts Total loading time: 0.318 Render date: 2021-04-23T15:37:04.114Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Realistic Modeling of Nanostructures Using Density Functional Theory

Published online by Cambridge University Press:  31 January 2011

Get access


The development of materials and devices at the nanoscale presents great challenges, from synthesis to assembly to characterization. Often, progress can only be made by complementing experimental work with electronic-structure modeling, harnessing the efficiency, predictive power, and atomic resolution of density functional theory to describe molecular architectures exactly at those scales (hundreds or thousands of atoms) where the most promising and undiscovered properties are to be engineered. Some of the next-generation technologies that will benefit first from first-principles simulations encompass areas as diverse as energy and information storage and retrieval, detection and sensing of biological and foreign contaminants, nanostructured catalysts, nanomechanical devices, hybrid organic-inorganic and biologically inspired materials, and novel computer technologies based on integrated optical and electronic platforms. This article reviews some of the recent successes and insights gained by electronic-structure modeling, ranging from carbon nanotubes to semiconducting nanoparticles, quantum dots, and self-assembled monolayers.

Research Article
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below.


1Car, R. and Parrinello, M.Phys. Rev. Lett. 55 (1985) p.2471.CrossRefGoogle Scholar
2Vanderbilt, D.Phys. Rev. B 41 (1990) p. 7892.CrossRefGoogle Scholar
3Payne, M.C.Teter, M.P.Allan, D.C.Arias, T.A. and Joannopoulos, J.D.Rev. Mod. Phys. 64 (1992) p.1045.CrossRefGoogle Scholar
4Kresse, G. and Furthmuller, J.Comput. Mater. Sci. 6 (1996) p.15.CrossRefGoogle Scholar
5Kresse, G. and Furthmuller, J.Phys. Rev. B 54 (1996) p.11169.CrossRefGoogle Scholar
6Gonze, X.Beuken, J.M.Caracas, R.Detraux, F.Fuchs, M.Rignanese, G.M.Sindic, L.Verstraete, M.Zerah, G.Jollet, F.Torrent, M.Roy, A.Mikami, M.Ghosez, P.Raty, J.Y. and Allan, D.C.Comput. Mater. Sci. 25 (2002) p. 478.CrossRefGoogle Scholar
7Scandolo, S.Giannozzi, P.Cavazzoni, C.Gironcoli, S. de, Pasquarello, A. and Baroni, S.Z. Kristallogr. 220 (2005) p.574.Google Scholar
8Adamo, C.Ernzerhof, M. and Scuseria, G.E.J.Chem. Phys. 112 (2000) p.2643.CrossRefGoogle Scholar
9Heyd, J.Scuseria, G.E. and Ernzerhof, M.J.Chem. Phys. 118 (2003) p.8207.CrossRefGoogle Scholar
10Curtarolo, S.Morgan, D.Persson, K. and Ceder, G.Phys. Rev. Lett. 91 135503 (2003).CrossRefGoogle Scholar
11. Franceschetti, A. and Zunger, A.Nature 402 (1999) p.60.CrossRefGoogle Scholar
12George, A.M.Iniguez, J. and Bellaiche, L.Nature 413 (2001) p.54.CrossRefGoogle Scholar
13Wang, T.Moll, N.Cho, K.J. and Joannopoulos, D.Phys. Rev. Lett. 82 (1999) p.3304.CrossRefGoogle Scholar
14Fornari, M. and Singh, D.J.Phys. Rev. B 59 (1999) p.9722.CrossRefGoogle Scholar
15Scherlis, D.A. and Marzari, N.J. Am. Chem. Soc. 127 (2005) p.3207.CrossRefGoogle Scholar
16Nakhmanson, S.M.Rabe, K.M. and Vanderbilt, D.Phys. Rev. B 73 060101 (2006).CrossRefGoogle Scholar
17Neaton, J.B. and Rabe, K.M.Appl. Phys. Lett. 82 (2003) p.1586.CrossRefGoogle Scholar
18Park, J.Pasupathy, A.N.Goldsmith, J.I.Chang, C.Yaish, Y.Petta, J.R.Rinkoski, M.Sethna, J.P.Abruna, H.D.McEuen, P.L. and Ralph, D.C.Nature 417 (2002) p.722.CrossRefGoogle Scholar
19Fattebert, J.L. and Gygi, F.Computer Phys. Commun. 162 (2004) p.24.CrossRefGoogle Scholar
20Alfe, D.Phys. Rev. B 68 064423 (2003).CrossRefGoogle Scholar
21Mostofi, A.A.Skylaris, C.K.Haynes, P.D. and Payne, M.C.Computer Phys. Commun. 147 (2002) p.788.CrossRefGoogle Scholar
22Ordejon, P.Phys. Status Solidi B 217 (2000) p.335.3.0.CO;2-Z>CrossRefGoogle Scholar
23Goedecker, S.Rev. Mod. Phys. 71 (1999) p.1085.CrossRefGoogle Scholar
24Williamson, A.J.Hood, R.Q. and Grossman, J.C.Phys. Rev. Lett. 87 246406 (2001).CrossRefGoogle Scholar
25Soler, J.M.Artacho, E.Gale, J.D.Garcia, A.Junquera, J.Ordejon, P. and Sanchez-Portal, D., J.Phys.: Condens. Matt. 14 (2002) p.2745.Google Scholar
26Bowler, D.R.Miyazaki, T. and Gillan, M.J.J.Phys.: Condens. Matt. 14 (2002) p.2781.Google Scholar
27Skylaris, C.K.Haynes, P.D.Mostofi, A.A. and Payne, M.C.J. Chem. Phys. 122 084119 (2005).CrossRefGoogle Scholar
28Skylaris, C.K.Mostofi, A.A.Haynes, P.D.Dieguez, O. and Payne, M.C.Phys. Rev. B 66 035119 (2002).CrossRefGoogle Scholar
29Sanchez-Portal, D., Ordejon, P.Artacho, E. and Soler, J.M.Int. J. Quantum Chem. 65 (1997) p.453.3.0.CO;2-V>CrossRefGoogle Scholar
30Challacombe, M.J. Chem. Phys. 110 (1999) p.2332.CrossRefGoogle Scholar
31Franceschetti, A.Wang, L.W.Bester, G. and Zunger, A.Nano Lett. 6 (2006) p.1069.CrossRefGoogle Scholar
32Pavesi, L.Negro, L. Dal, Mazzoleni, C.Franzo, G. and Priolo, F.Nature 408 (2000) p.440.CrossRefGoogle Scholar
33Puzder, A.Williamson, A.J.Grossman, J.C. and Galli, G.Phys. Rev. Lett. 88 097401 (2002).CrossRefGoogle Scholar
34Williamson, A.J.Grossman, J.C.Hood, R.Q.Puzder, A. and Galli, G.Phys. Rev. Lett. 89 196803 (2002).CrossRefGoogle Scholar
35Wolkin, M.V. J.Jorne, type="authors">Fauchet, P.M.Allan, G. and Delerue, C.Phys. Rev. Lett. 82 (1999) p.197.CrossRefFauchet,+P.M.Allan,+G.+and+Delerue,+C.Phys.+Rev.+Lett.+82+(1999)+p.197.>Google Scholar
36Vasiliev, I.Ogut, S. and Chelikowsky, J.R.Phys. Rev. Lett. 86 (2001) p.1813.CrossRefGoogle Scholar
37Vasiliev, I.Ogut, S. and Chelikowsky, J.R.Phys. Rev. B 65 115416 (2002).CrossRefGoogle Scholar
38Reboredo, F.A. and Williamson, A.J.Phys. Rev. B 71 121105 (2005).CrossRefGoogle Scholar
39Foulkes, W.M.C.Mitas, L.Needs, R.J. and Rajagopal, G.Rev. Modern Phys. 73 (2001) p. 33.CrossRefGoogle Scholar
40Onida, G.Reining, L. and Rubio, A.Rev. Modern Phys. 74 (2002) p.601.CrossRefGoogle Scholar
41Negro, L. Dal, Yi, J.H.Kimerling, L.C.Hamel, S.Williamson, A.J. and Galli, G.Appl. Phys. Lett. 88 183103 (2006).CrossRefGoogle Scholar
42Frank, S.Poncharal, P.Wang, Z.L. and Heer, W.A. de, Science 280 (1998) p.1744.CrossRefGoogle Scholar
43Maultzsch, J.Reich, S.Thomsen, C. and Requardt, H.Phys. Rev. Lett. 92 075501 (2004).CrossRefGoogle Scholar
44Piscanec, S.Lazzeri, M.Mauri, F.Ferrari, A.C. and Robertson, J.Phys. Rev. Lett. 93 185503 (2004).CrossRefGoogle Scholar
45Yao, Z., Kane, C.L. and Dekker, C.Phys. Rev. Lett. 84 (2000) p.2941.CrossRefGoogle Scholar
46Javey, A.Guo, J.Paulsson, M.Wang, Q.Mann, D.Lundstrom, M. and Dai, H.J.Phys. Rev. Lett. 92 106804 (2004).CrossRefGoogle Scholar
47Lazzeri, M.Piscanec, S.Mauri, F.Fer-rari, A.C., and Robertson, J.Phys. Rev. Lett. 95 (2005).Google Scholar
48Debernardi, A.Baroni, S. and Molinari, E.Phys. Rev. Lett. 75 (1995) p.1819.CrossRefGoogle Scholar
49Kampfrath, T.Perfetti, L.Schapper, F.Frischkorn, C. and Wolf, M.Phys. Rev. Lett. 95 187403 (2005).CrossRefGoogle Scholar
50Pop, E.Mann, D.Cao, J., Wang, Q.Good-son, K., and Dai, H.J.Phys. Rev. Lett. 95 155505 (2005).CrossRefGoogle Scholar
51Lang, N.D.Phys. Rev. B 52 (1995) p. 5335.CrossRefGoogle Scholar
52Ventra, M. Di, Pantelides, S.T. and Lang, N.D.Phys. Rev. Lett. 84 (2000) p.979.CrossRefGoogle Scholar
53Taylor, J.Guo, H. and Wang, J.Phys. Rev. B 63 245407 (2001).CrossRefGoogle Scholar
54Xue, Y.Q.Datta, S. and Ratner, M.A.Chem. Phys. 281 (2002) p.151.CrossRefGoogle Scholar
55Stokbro, K.Taylor, J.Brandbyge, M. and Ordejon, P. in Molecular Electronics III, Vol. 1006 (2003) p.212.Google Scholar
56Marzari, N. and Vanderbilt, D.Phys. Rev. B 56 (1997) p.12847.CrossRefGoogle Scholar
57Lee, Y.S.Nardelli, M.B. and Marzari, N.Phys. Rev. Lett. 95 076804 (2005).CrossRefGoogle Scholar
58Calzolari, A.Marzari, N.Souza, I. and Nardelli, M.B.Phys. Rev. Lett. 69 035108 (2004).Google Scholar
59Thygesen, K.S. and Jacobsen, K.W.Chem. Phys. 319 (2005) p.111.CrossRefGoogle Scholar
60Latil, S.Roche, S. and Charlier, J.C.Nano Lett. 5 (2005) p.2216.CrossRefGoogle Scholar
61Nevidomskyy, A.H.Csanyi, G. and Payne, M.C.Phys. Rev. Lett. 91 15502 (2003).CrossRefGoogle Scholar
62Adessi, C.Roche, S. and Blase, X.Phys. Rev. B 73 125414 (2006).CrossRefGoogle Scholar
63Choi, H.J.Ihm, J.Louie, S.G. and Cohen, M.L.Phys. Rev. Lett. 84 (2000) p.2917.CrossRefGoogle Scholar
64Spataru, C.D.Ismail-Beigi, S., Benedict, L.X. and Louie, S.G.Phys. Rev. Lett. 92 077402 (2004).CrossRefGoogle Scholar
65Spataru, C.D.Ismail-Beigi, S., Capaz, R.B. and Louie, S.G.Phys. Rev. Lett. 95 247402 (2005).CrossRefGoogle Scholar
66Park, C.H.Spataru, C.D. and Louie, S.G.Phys. Rev. Lett. 96 126105 (2006).CrossRefGoogle Scholar
67Maultzsch, J.Pomraenke, R.Reich, S.Chang, E.Prezzi, D.Ruini, A.Molinari, E.Strano, M.S.Thomsen, C. and Lienau, C.Phys. Rev. B 72 241402 (2005).CrossRefGoogle Scholar
68Reed, M.A.Zhou, C.Muller, C.J.Burgin, T.P. and Tour, J.M.Science 278 (1997) p. 252.CrossRefGoogle Scholar
69Lu, W.C.Meunier, V. and Bernholc, J.Phys. Rev. Lett. 95 206805 (2005).CrossRefGoogle Scholar
70Meunier, V.Nardelli, M.B.Bernholc, J.Zacharia, T. and Charlier, J.C.Appl. Phys. Lett. 81 (2002) p.5234.CrossRefGoogle Scholar
71Ventra, M. Di, Chen, Y.C. and Todorov, T.N.Phys. Rev. Lett. 92 176803 (2004).CrossRefGoogle Scholar
72Burke, K.Car, R. and Gebauer, R.Phys. Rev. Lett. 94 146803 (2005).CrossRefGoogle Scholar
73Kohn, W.Meir, Y. and Makarov, D.E.Phys. Rev. Lett. 80 (1998) p.4153.CrossRefGoogle Scholar
74Dion, M.Rydberg, H.Schroder, E.Langreth, D.C. and Lundqvist, B.I.Phys. Rev. Lett. 92 246401 (2004).CrossRefGoogle Scholar
75Lilienfeld, O.A. von, Tavernelli, I.Roth-lisberger, U., and Sebastiani, D.Phys. Rev. Lett. 93 153004 (2004).CrossRefGoogle Scholar
76Böhringer, M., Morgenstern, K.Schneider, W.-D.Berndt, R.Mauri, F.Vita, A. De, and Car, R.Phys. Rev. Lett. 83 (1999) p. 324.CrossRefGoogle Scholar
77Hill, M.G.Penneau, J.F.Zinger, B.Mann, K.R. and Miller, L.L.Chem. Mater. 4 (1992) p.1106.CrossRefGoogle Scholar
78Yu, H.H. and Swager, T.M.IEEE J. Oceanic Eng. 29 (2004) p.692.CrossRefGoogle Scholar
79Madden, J.D.W.Vandesteeg, N.A.An-quetil, P.A., Madden, P.G.A.Takshi, A.Pytel, R.Z.Lafontaine, S.R.Wieringa, P.A. and Hunter, I.W.IEEE J.Oceanic Eng. 29 (2004) p.706.CrossRefGoogle Scholar
80Scherlis, D.A. and Marzari, N.J.Phys. Chem. B 108 (2004) p.17791.CrossRefGoogle Scholar
81Csanyi, G.Albaret, T.Payne, M.C. and Vita, A. De, Phys. Rev. Lett. 93 175503 (2004).CrossRefGoogle Scholar
82Scherlis, D.A.Fattebert, J.L.Gygi, F.Cococcioni, M. and Marzari, N.J. Chem. Phys. 124 074103 (2006).CrossRefGoogle Scholar
83Fattebert, J.L. and Gygi, F.J. Comput. Chem. 23 (2002) p.662.CrossRefGoogle Scholar
84Laio, A. and Parrinello, M.Proc. Nat. Acad. Sci. USA 99 (2002) p.12562.CrossRefGoogle Scholar
85Kanai, Y.Tilocca, A.Selloni, A. and Car, R.J.Chem. Phys. 121 (2004) p.3359.CrossRefGoogle Scholar
86Henkelman, G.Uberuaga, B.P. and Jonsson, H.J.Chem. Phys. 113 (2000) p.9901.CrossRefGoogle Scholar
87Dellago, C.Bolhuis, P.G.Csajka, F.S. and Chandler, D.J. Chem. Phys. 108 (1998) p. 1964.CrossRefGoogle Scholar
88Mousseau, N. and Barkema, G.T.Phys. Rev. E 57 (1998) p.2419.Google Scholar
89Voter, A.F.J. Chem. Phys. 106 (1997) p. 4665.CrossRefGoogle Scholar
90Voter, A.F.Phys. Rev. Lett. 78 (1997) p.3908.CrossRefGoogle Scholar
91Mauri, F.Pfrommer, B.G. and Louie, S.G.Phys. Rev. Lett. 77 (1996) p.5300.CrossRefGoogle Scholar
92Pickard, C.J. and Mauri, F.Phys. Rev. B 63 245101 (2001).CrossRefGoogle Scholar
93Debernardi, A.Bernasconi, M.Cardona, M. and Parrinello, M.Appl. Phys. Lett. 71 (1997) p.2692.CrossRefGoogle Scholar
94Silvestrelli, P.L.Bernasconi, M. and Parrinello, M.Chem. Phys. Lett. 277 (1997) p.478.CrossRefGoogle Scholar
95Giannozzi, P. and Baroni, S.J. Chem. Phys. 100 (1994) p.8537.CrossRefGoogle Scholar
96Scamarcio, G.Tapfer, L.Konig, W.Fischer, A.Ploog, K.Molinari, E.Baroni, S.Giannozzi, P. and Degironcoli, S.Phys. Rev. B 43 (1991) p.14754.CrossRefGoogle Scholar
97Pasquarello, A. and Car, R.Phys. Rev. Lett. 79 (1997) p.1766.CrossRefGoogle Scholar
98Umari, P. and Pasquarello, A.Diamond and Related Mater. 14 (2005) p.1255.CrossRefGoogle Scholar
99Umari, P.Pasquarello, A. and Corso, A. Dal, Phys. Rev. B 63 094305 (2001).CrossRefGoogle Scholar
100Baroni, S. and Resta, R.Phys. Rev. B 33 (1986) p.5969.CrossRefGoogle Scholar
101Putrino, A.Sebastiani, D. and Par-rinello, M., J.Chem. Phys. 113 (2000) p.7102.CrossRefGoogle Scholar
102Rignanese, G.M.Gonze, X. and Pasquarello, A.Phys. Rev. B 6310 104305 (2001).CrossRefGoogle Scholar
103Reuter, K. and Scheffler, M.Surf. Sci. 490 (2001) p.20.CrossRefGoogle Scholar
104Taillefumier, M.Cabaret, D.Flank, A.M. and Mauri, F.Phys. Rev. B 66 195107 (2002).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 90 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 23rd April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Realistic Modeling of Nanostructures Using Density Functional Theory
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Realistic Modeling of Nanostructures Using Density Functional Theory
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Realistic Modeling of Nanostructures Using Density Functional Theory
Available formats

Reply to: Submit a response

Your details

Conflicting interests

Do you have any conflicting interests? *