Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-w78fb Total loading time: 0.518 Render date: 2021-04-19T23:30:27.768Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Optical nonreciprocal devices for silicon photonics using wafer-bonded magneto-optical garnet materials

Published online by Cambridge University Press:  11 June 2018

Tetsuya Mizumoto
Affiliation:
Tokyo Institute of Technology, Japan; tmizumot@pe.titech.ac.jp
Roel Baets
Affiliation:
Ghent University, Belgium; roel.baets@ugent.be
John E. Bowers
Affiliation:
Departments of Electrical and Computer Engineering and Materials, University of California, Santa Barbara, USA; bowers@ece.ucsb.edu
Get access

Abstract

Optical isolators and circulators are important elements in many photonic systems. These nonreciprocal devices are typically made of bulk optical components and are difficult to integrate with other elements of photonic integrated circuits. This article discusses the best performance for waveguide isolators and circulators achieved with heterogeneous bonding. By virtue of the bonding technology, the devices can make use of a large magneto-optical effect provided by a high-quality single-crystalline garnet grown in a separate process on a lattice-matched substrate. In a silicon-on-insulator waveguide, the low refractive index of the buried oxide layer contributes to the large penetration of the optical field into a magneto-optical garnet used as an upper-cladding layer. This enhances the magneto-optical phase shift and contributes greatly to reducing the device footprint and the optical loss. Several versions of silicon waveguide optical isolators and circulators, both based on the magneto-optical phase shift, are demonstrated with an optical isolation ratio of ≥30 dB in a wavelength band of 1550 nm. Furthermore, the isolation wavelength can be effectively tuned over several tens of nanometers.

Type
Materials for Nonreciprocal Photonics
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below.

References

Petermann, K., IEEE J. Sel. Top. Quantum Electron. 1, 480 (1995).CrossRefGoogle Scholar
Wang, S., Shah, M., Crow, J.D., J. Appl. Phys. 43, 1861 (1972).CrossRefGoogle Scholar
Warner, J., IEEE Trans. Microw. Theory Tech. MTT-21, 769 (1973).CrossRefGoogle Scholar
Hepner, G., Desormiere, B., Castera, J.P., Appl. Opt. 14, 1479 (1975).CrossRefGoogle Scholar
Ando, K., Okoshi, T., Koshizuka, N., Appl. Phys. Lett. 53, 4 (1988).CrossRefGoogle Scholar
Mizumoto, T., Kawaoka, Y., Naito, Y., IEICE Trans. E69, 968 (1986).Google Scholar
Wolfe, R., Fratello, V.J., McGlashan-Powell, M., J. Appl. Phys. 63, 3099 (1988).CrossRefGoogle Scholar
Dötsch, H., Bahlmann, N., Zhuromskyy, O., Hammer, M., Wilkens, L., Gerhardt, R., Hertel, P., Popkov, A.F., J. Opt. Soc. Am. B. 22, 240 (2005).CrossRefGoogle Scholar
Levy, M., IEEE J. Sel. Top. Quantum Electron. 8, 1300 (2002).CrossRefGoogle Scholar
Hansen, P., Krume, J.P., Thin Solid Films 114, 69 (1984).CrossRefGoogle Scholar
Takei, R., Yoshida, K., Mizumoto, T., Jpn. J. Appl. Phys. 49, 086204 (2010).CrossRefGoogle Scholar
Mizumoto, T., Shoji, Y., Takei, R., Materials 5, 985 (2012).CrossRefGoogle Scholar
Roelkens, G., Brouckaert, J., Van Thourhout, D., Baets, R., Nötzel, R., Smit, M., J. Electrochem. Soc. 153, G1015 (2006).CrossRefGoogle Scholar
Tien, M.-C., Mizumoto, T., Pintus, P., Krömer, H., Bowers, J., Opt. Express 19, 11740 (2011).CrossRefGoogle Scholar
Geller, S., Espinosa, G.P., Crandall, P.B., J. Appl. Crystallogr. 2, 86 (1969).CrossRefGoogle Scholar
Hull, R., “Properties of crystalline silicon,” The Institution of Electrical Engineers, London, UK, pp. 91153 (1999).Google Scholar
Sung, S.-Y., Qi, X., Stadler, B.J.H., Appl. Phys. Lett. 87, 121111 (2005).CrossRefGoogle Scholar
Körner, T., Heinrich, A., Weckrle, A., Roocks, P., Stritzker, B., J. Appl. Phys. 103, 07B337 (2008).CrossRefGoogle Scholar
Bi, L., Hu, J., Dionne, G.F., Kimerling, L., Ross, C.A., Proc. SPIE 7941, 794105 (2011).CrossRefGoogle Scholar
Goto, T., Eto, Y., Kobayashi, K., Haga, Y., Inoue, M., Ross, C., J. Appl. Phys. 113, 17A939 (2013).CrossRefGoogle Scholar
Block, A.D., Dulal, P., Stadler, B.J.H., Seaton, N.C.A., IEEE Photonics J. 6, 0600308 (2014).CrossRefGoogle Scholar
Shoji, Y., Itoh, M., Shirato, Y., Mizumoto, T., Opt. Express 20, 18440 (2012).CrossRefGoogle Scholar
Ghosh, S., Keyvavinia, S., Van Roy, W., Mizumoto, T., Roelkens, G., Baets, R., Opt. Express 20, 1839 (2012).CrossRefGoogle Scholar
Shoji, Y., Mizumoto, T., Yokoi, H., Hsieh, I.W., Osgood, R.M. Jr., Appl. Phys. Lett. 92, 071117 (2008).CrossRefGoogle Scholar
Shoji, Y., Mizumoto, T., Sci. Technol. Adv. Mater. 15, 014602 (2014).CrossRefGoogle Scholar
Auracher, F., Witte, H.H., Opt. Commun. 13, 435 (1975).CrossRefGoogle Scholar
Mitsuya, K., Shoji, Y., Mizumoto, T., IEEE Photonics Technol. Lett. 25, 721 (2013).CrossRefGoogle Scholar
Shoji, Y., Mizumoto, T., Opt. Express 15, 639 (2007).CrossRefGoogle Scholar
Shoji, Y., Shirato, Y., Mizumoto, T., Jpn. J. Appl. Phys. 53, 022202 (2014).CrossRefGoogle Scholar
Furuya, K., Nemoto, T., Kato, K., Shoji, Y., Mizumoto, T., J. Lightwave Technol. 34, 1699 (2016).CrossRefGoogle Scholar
Huang, D., Pintus, P., Zhang, C., Shoji, Y., Mizumoto, T., Bowers, J.E., IEEE J. Sel. Top. Quantum Electron. 22, 4403408 (2016).Google Scholar
Huang, D., Pintus, P., Shoji, Y., Morton, P., Mizumoto, T., Bowers, J.E., Opt. Lett. 42, 4901 (2017).CrossRefGoogle Scholar
Kono, N., Kakihara, K., Saitoh, K., Koshiba, M., Opt. Express 15, 7737 (2007).CrossRefGoogle Scholar
Jalas, D., Petrov, A., Krause, M., Hampe, J., Eich, M., Opt. Lett. 35, 3438 (2010).CrossRefGoogle Scholar
Pintus, P., Tien, M.-C., Bowers, J.E., IEEE Photonics Technol. Lett. 23, 1670 (2011).CrossRefGoogle Scholar
Pintus, P., Huang, D., Zhang, C., Shoji, Y., Mizumoto, T., Bowers, J.E., J. Lightwave Technol. 35, 1429 (2017).CrossRefGoogle Scholar
Pintus, P., Di Pasquale, F., Bowers, J.E., Opt. Express 21, 5041 (2013).CrossRefGoogle Scholar
Jalas, D., Petrov, A.Y., Eich, M., Opt. Lett. 39, 1425 (2014).CrossRefGoogle Scholar
Huang, D., Pintus, P., Zhang, C., Morton, P., Shoji, Y., Mizumoto, T., Bowers, J.E., Optica 4, 23 (2017).CrossRefGoogle Scholar
Ghosh, S., Keyvaninia, S., Shirato, Y., Mizumoto, T., Roelkens, G., Baets, R., IEEE Photonics J. 5, 6601108 (2013).CrossRefGoogle Scholar
Ghosh, S., Keyvaninia, S., Van Roy, W., Mizumoto, T., Roelkens, G., Baets, R., Opt. Lett. 38, 965 (2013).CrossRefGoogle Scholar
Sun, X., Du, Q., Goto, T., Onbasli, M., Kim, D., Aimon, N., Hu, J., Ross, C., ACS Photonics 2, 7 (2015).Google Scholar
Shoji, Y., Miura, K., Mizumoto, T., J. Opt. 18, 1 (2015).Google Scholar

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 32
Total number of PDF views: 241 *
View data table for this chart

* Views captured on Cambridge Core between 11th June 2018 - 19th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Optical nonreciprocal devices for silicon photonics using wafer-bonded magneto-optical garnet materials
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Optical nonreciprocal devices for silicon photonics using wafer-bonded magneto-optical garnet materials
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Optical nonreciprocal devices for silicon photonics using wafer-bonded magneto-optical garnet materials
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *