Published online by Cambridge University Press: 06 April 2011
The physical properties that make “functional” materials worthy of their moniker frequently arise because of a phase transition that establishes a new kind of order as the material is cooled from a parent state. Such ordered states include ferroelectrics, ferromagnets, and structurally ordered martensites; because these states all break an orientational symmetry, and it is rare that one can produce the conditions for single domain crystallinity, the observed configuration is generally heterogeneous. However, the conditions under which domain structures form are highly constrained, especially by elastic interactions within a solid; consequently, the observed structures are far from fully random, even if disorder is present. Often the structure of the heterogeneity is important to the function, as in shape-memory alloys. Increasingly, we are surprised to discover new phases inside solids that are themselves a heterogeneous modulation of their parents.
Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.
* Views captured on Cambridge Core between September 2016 - 27th January 2021. This data will be updated every 24 hours.