Skip to main content Accessibility help
×
Home

Article contents

Nanoscale Heterogeneity in Functional Materials

Published online by Cambridge University Press:  06 April 2011

Get access

Abstract

The physical properties that make “functional” materials worthy of their moniker frequently arise because of a phase transition that establishes a new kind of order as the material is cooled from a parent state. Such ordered states include ferroelectrics, ferromagnets, and structurally ordered martensites; because these states all break an orientational symmetry, and it is rare that one can produce the conditions for single domain crystallinity, the observed configuration is generally heterogeneous. However, the conditions under which domain structures form are highly constrained, especially by elastic interactions within a solid; consequently, the observed structures are far from fully random, even if disorder is present. Often the structure of the heterogeneity is important to the function, as in shape-memory alloys. Increasingly, we are surprised to discover new phases inside solids that are themselves a heterogeneous modulation of their parents.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Ahn, K., Lookman, T., Bishop, A.R., Nature 428, 401 (2004).CrossRefGoogle Scholar
2.Mathur, N., Littlewood, P., Nat. Mater. 3, 207 (2004).CrossRefGoogle Scholar
3.Bhattacharya, K., Microstructure of Martensite (Oxford University Press, Oxford, 2003).Google Scholar
4.Salje, E.K.H., Phase Transitions in Ferroelastic and Coelastic Solids (Cambridge University Press, Cambridge, 1990).Google Scholar
5.Porta, M., Castán, T., Lloveras, P., Lookman, T., Saxena, A., Shenoy, S.R., Phys. Rev. B 79, 214117 (2009).CrossRefGoogle Scholar
6.Chandra, P., Littlewood, P.B., Topics in Applied Physics 105, 69116 (2007).CrossRefGoogle Scholar
7.Yeomans, J.M., Statistical Mechanics of Phase Transitions (Oxford University Press, Oxford, 1992).Google Scholar
8.Binder, K., Heermann, D.W., Monte Carlo Simulations in Statistical Physics (Springer, New York, 2007).Google Scholar
9.Shenoy, S.R., Lookman, T., Phys. Rev. B 78, 144103 (2008).CrossRefGoogle Scholar
10.Sarkar, S., Ren, X., Otsuka, K., Phys. Rev. Lett. 95, 205702 (2005).CrossRefGoogle Scholar
11.Fischer, K.H., Hertz, J., Spin Glasses (Cambridge University Press, Cambridge, 1991). D. Chowdhury, Spin Glasses and Other Frustrated Systems (World Scientific, Singapore, 1986).CrossRefGoogle Scholar
12.Lookman, T., Shenoy, S.R., Rasmussen, K.ø., Saxena, A., Bishop, A.R., Phys. Rev. B 67, 024114 (2003).CrossRefGoogle Scholar
13.Ahn, K.H., Lookman, T., Saxena, A., Bishop, A.R., Phys. Rev. B 68, 092101 (2003).CrossRefGoogle Scholar
14.Vasiliu-Doloc, L., Rosenkranz, S., Osborn, R., Sinha, S.K., Lynn, J.W., Mesot, J., Seeck, O.H., Preosti, G., Fedro, A.J., Mitchell, J.F., Phys. Rev. Lett. 83, 4393 (1999).CrossRefGoogle Scholar
15.Islam, Z., Liu, X., Sinha, S.K., Lang, J.C., Moss, S.C., Haskel, D., Srajer, G., Wochner, P., Lee, D.R., Haeffner, D.R., Welp, U., Phys. Rev. Lett. 93157008 (2004).Google Scholar
16.Maniadis, P., Lookman, T., Bishop, A.R., Phys. Rev. B 78, 134304 (2008).CrossRefGoogle Scholar
17.Ahn, K.H., Zhu, J-X., Nussinov, Z., Lookman, T., Saxena, A., Balatsky, A.V., Bishop, A.R., J. Supercond. 17, 713 (2004).CrossRefGoogle Scholar
18.Guiton, B.S., Davies, P.K., Nat. Mat. 6, 586 (2007).CrossRefGoogle Scholar
19.Yeo, S., Horibe, Y., Mori, S., Tseng, C.M., Chen, C.H., Khachaturyan, A.G., Zhang, C.L., Cheong, S.-W., Appl. Phys. Lett. 89, 233120 (2006).CrossRefGoogle Scholar
20.Bouar, Y. Le, Loiseau, A., Khachaturyan, A.G., Acta Mater. 46, 2777 (1998).CrossRefGoogle Scholar
21.Waitz, T., Karnthaler, H.P., Acta Mater. 52, 5461 (2004).CrossRefGoogle Scholar
22.Kartha, A.S., Castán, T., Krumhansl, J.A., Sethna, J.P., Phys. Rev. Lett. 67, 3630 (1991).CrossRefGoogle Scholar
23.Wang, Y., Ren, X., Otsuka, K., Materials Science Forum 583, 67 (2008).CrossRefGoogle Scholar
24.Ren, X., Wang, Y., Zhou, Y., Zhang, Z., Wang, D., Fan, G., Otsuka, K., Suzuki, T., Ji, Y., Zhang, J., Tian, Y., Hou, S., Ding, X., Phil. Mag. (2009), in press.Google Scholar
25.Dagotto, E., Hotta, T., Moreo, A., Phys. Rep. 344, 1 (2001).CrossRefGoogle Scholar
26.Salamon, M.B., Jaime, M., Rev. Mod. Phys. 73, 583 (2001).CrossRefGoogle Scholar
27.Milward, G.C., Calderon, M.J., Littlewood, P.B., Nature 433, 607 (2005).CrossRefGoogle Scholar
28.Rowley, S.E., Spalek, L.J., Smith, R.P., Dean, M.P.M., Lonzarich, G.G., Scott, J.F., Saxena, S.S., arXiv:0903.1445 (2009).Google Scholar
29.Pawley, G.S., Cochran, W., Cowley, R.A., Dolling, R.G., Phys. Rev. Lett. 17, 753 (1966).CrossRefGoogle Scholar
30.Jaramillo, R., Feng, Y., Lang, J.C., Islam, Z., Srajer, G., Littlewood, P.B., McWhan, D.B., Rosenbaum, T.F., Nature 459, 405 (2009).CrossRefGoogle Scholar
31.Palova, L., Chandra, P., Coleman, P., Phys. Rev. B 79, 075101 (2009).CrossRefGoogle Scholar
32.Perez-Mato, J.M., Salje, E.K.H., J. Phys. Condens. Matter 12, L29 (2000).CrossRefGoogle Scholar
33.Lencer, D., Salinga, M., Grabowski, B., Hickel, T., Neugebauer, J., Wuttig, M., Nat. Mater. 7, 972 (2008).CrossRefGoogle Scholar
34.Manolikas, C., Amelinckx, S., Phys. Status Solidi A 60, 607 (1980).CrossRefGoogle Scholar
35.Manolikas, C., Amelinckx, S., Phys. Status Solidi A 61, 179 (1980).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 60 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 27th January 2021. This data will be updated every 24 hours.

Hostname: page-component-898fc554b-sztd2 Total loading time: 1.312 Render date: 2021-01-27T10:49:47.575Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Nanoscale Heterogeneity in Functional Materials
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Nanoscale Heterogeneity in Functional Materials
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Nanoscale Heterogeneity in Functional Materials
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *