Skip to main content Accessibility help
×
Home

Article contents

Nanocrystalline Silicon for Optoelectronic Applications

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Light emission in silicon has been intensively investigated since the 1950s when crystalline silicon (c-Si) was recognized as the dominant material in microelectronics. Silicon is an indirect-bandgap semiconductor and momentum conservation requires phonon assistance in radiative electron-hole recombination (Figure 1a, top left). Because phonons carry a momentum and an energy, the typical signature of phonon-assisted recombination is several peaks in the photoluminescence (PL) spectra at low temperature. These PL peaks are called “phonon replicas.” High-purity c-Si PL is caused by free-exciton self-annihilation with the exciton binding energy of ~11 meV. The TO-phonon contribution in conservation processes is most significant, and the main PL peak (~1.1 eV) is shifted from the bandgap value (~1.17 eV) by ~70 meV—that is, the exciton binding energy plus TO-phonon energy (Figure 1a).

Type
Silicon-Based Optoelectronics
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Haynes, H.R. and Briggs, H.B., Phys. Rev. 86 (1952) p. 647;Google Scholar
Haynes, H.R. and Westphal, W.C., Phys. Rev. 101 (1956) p. 1676.CrossRefGoogle Scholar
2.Vouk, M.A. and Lightowlers, E.C., J. Phys. C 10 (1977) p. 3689.Google Scholar
3.Yablonovitch, E., Altera, D.L., Chang, C.C., Gmitter, T., and Bright, T.B., Phys. Rev. Lett. 57 (1986) p. 249.CrossRefGoogle Scholar
4.Collins, R.T., Fauchet, P.M., and Tischler, M.A., Phys. Today 50 (1997) p. 24;CrossRefGoogle Scholar
Fauchet, P.M., in Light Emission in Silicon, edited by Lockwood, D.J., Semiconductors and Semimetals, vol. 49 (Academic Press, San Diego, CA, 1998) p. 206.Google Scholar
5.Canham, L.T., Appl. Phys. Lett. 57 (1990) p. 1046.CrossRefGoogle Scholar
6.Richter, A., Steiner, P., Kozlowski, F., and Lang, W., IEEE Electron Device Lett. 12 (1991) p. 691;CrossRefGoogle Scholar
Koshida, N. and Koyama, H., Appl. Phys. Lett. 60 (1992) p. 347;CrossRefGoogle Scholar
Bsiesy, A., Miller, F., Ligeon, M., Gaspard, F., Herino, R., Romenstain, R., and Vial, J.C., Phys. Rev. Lett. 71 (1993) p. 637.CrossRefGoogle Scholar
7.Tischler, M.A., Collins, R.T., Stathis, J.H., and Tsang, J.C., Appl. Phys. Lett. 60 (1992) p. 639.CrossRefGoogle Scholar
8. For example, see Light Emission From Silicon, edited by Iyer, S.S., Collins, R.T., and Canham, L.T. (Mater. Res. Soc. Symp. Proc. 256, Pittsburgh, 1992);Google Scholar
Microcrystalline Semiconductors: Materials Science and Devices, edited by Fauchet, P.M., Tsai, C.C., Canham, L.T., Shimizu, I., and Aoyagi, Y. (Mater. Res. Soc. Symp. Proc. 283, Pittsburgh, 1993);Google Scholar
Microcrystalline and Nanocrystalline Semiconductors, edited by Collins, R.W., Tsai, C.C., Hirose, M., Koch, F., and Brus, L. (Mater. Res. Soc. Symp. Proc. 358, Pittsburgh, 1995);Google Scholar
Advanced Luminescent Materials, edited by Lockwood, D.J., Fauchet, P.M., Koshida, N., and Brueck, S.R.J. (The Electrochemical Society, Pennington, NJ, 1996);Google Scholar
Advances in Microcrystalline and Nanocrystalline Semiconductors-1996, edited by Collins, R.W., Fauchet, P.M., Shimizu, I., Vial, J.C., Shimada, T., and Alivisatos, A.P. (Mater. Res. Soc. Symp. Proc. 452, Pittsburgh, 1997).Google Scholar
9. Very popular definition of porous silicon.Google Scholar
10.Loni, A., Simons, A.J., Cox, T.I., Calcott, P.D.J., and Canham, L.T., Electron. Lett. 31 (1995) p. 1288.CrossRefGoogle Scholar
11.Tsybeskov, L., Duttagupta, S.P., Hirschman, K.D., and Fauchet, P.M., Appl. Phys. Lett. 68 (1996) p. 2058.CrossRefGoogle Scholar
12.Hirschman, K.D., Tsybeskov, L., Duttagupta, S.P., and Fauchet, P.M., Nature 384 (1996) p. 338.CrossRefGoogle Scholar
13.Cullis, A.G. and Canham, L.T., Nature 353 (1991) p. 335.CrossRefGoogle Scholar
14.Proot, J.P., Delerue, C., and Allan, G., Appl. Phys. Lett. 61 (1992) p. 1948;CrossRefGoogle Scholar
Delerue, C., Allan, G., and Lannoo, M., Phys. Rev. B 48 (1993) p. 11024;CrossRefGoogle Scholar
Takagahara, T. and Takeda, K., Phys. Rev. 46 (1992) p. 15578;CrossRefGoogle Scholar
Zang, S.B. and Zunger, A., Appl. Phys. Lett. 63 (1993) p. 1399;CrossRefGoogle Scholar
Hybertsen, M.S., Phys. Rev. Lett. 72 (1994) p. 1514.CrossRefGoogle Scholar
15.Calcott, P.D.G., Nash, K.J., Canham, L.T., Kane, M.J., and Brumhead, D., J. Phys: Cond. Matter 5 (1993) p. L91;Google Scholar
J. Lumin. 57 (1993) p. 257.CrossRefGoogle Scholar
16.Kanemitsu, Y., in Light Emission in Silicon, edited by Lockwood, D.J., Semiconductors and Semimetals, vol. 49 (Academic Press, San Diego, CA, 1998) p. 157.CrossRefGoogle Scholar
17.Brus, L.E., Szajowski, P.F., Wilson, W.L., Harris, T.D., Schuppler, S., and Citrin, P.H., J. Am. Chem. Soc. 117 (1995) p. 2915.CrossRefGoogle Scholar
18.Rosenbauer, M., Finkbeiner, S., Bustarret, E., Weber, J., and Stutzmann, M., Phys. Rev. B 51 (1995) p. 10539.CrossRefGoogle Scholar
19.Kovalev, D., Hecker, H., Averboukh, B., BenChorin, M., Schwartzkopff, M., and Koch, F., Phys. Rev. 57 (1998) p. 3741.CrossRefGoogle Scholar
20.Carlos, W.E. and Prokes, S.M., Appl. Phys. Lett. 65 (1994) p. 1245;CrossRefGoogle Scholar
Prokes, S.M. and Glembocki, O.J., Phys. Rev. B 49 (1994) p. 2238;CrossRefGoogle Scholar
Prokes, S.M., Carlos, W.E., and Glembocki, O.J., Phys. Rev. 50 (1994) p. 17093.CrossRefGoogle Scholar
21.Wilson, W.L., Szajowski, P.F., and Brus, L.E., Science 262 (1993) p. 1242.CrossRefGoogle Scholar
22.von Behren, J.et al., Solid State Communr 105 (1998) p. 317.CrossRefGoogle Scholar
23.Mizuno, H., Koyama, H., and Koshida, N., Appl. Phys. Lett. 69 (1996) p. 3779.CrossRefGoogle Scholar
24.Rao, P., Schiff, E.A., Tsybeskov, L., and Fauchet, P.M., in Advances in Microcrystalline and Nanocrystalline Semiconductors-1996, edited by Collins, R.W., Fauchet, P.M., Shimizu, I., Vial, J.C., Shimada, T., and Alivisatos, A.P. (Mater. Res. Soc. Symp. Proc. 452, Pittsburgh, 1997) p. 613.Google Scholar
25.Tsybeskov, L., Hirschman, K.D., Moore, L.F., Fauchet, P.M., and Calcott, P.D.G., Appl. Phys. Lett. 69 (1996) p. 687.CrossRefGoogle Scholar
26.Tsybeskov, L., Hirschman, K.D., Duttagupta, S.P., and Fauchet, P.M., Appl. Phys. Lett. 69 (1996) p. 681.CrossRefGoogle Scholar
27.Tsybeskov, L., Duttagupta, S.P., Hirschman, K.D., and Fauchet, P.M., in Advanced Luminescent Materials, edited by Lockwood, D.J., Fauchet, P.M., Koshida, N., and Brueck, S.R.J. (The Electrochemical Society, Pennington, NJ, 1996) p. 34.Google Scholar
28.Tsybeskov, L., Moore, K.L., Fauchet, P.M., and Hall, D.G., in Advances in Microcrystalline and Nanocrystalline Semiconductors-1996, edited by Collins, R.W., Fauchet, P.M., Shimizu, I., Vial, J.C., Shimada, T., and Alivisatos, A.P. (Mater. Res. Soc. Symp. Proc. 452, Pittsburgh, 1997) p. 523.Google Scholar
29.Duttagupta, S.P., Fauchet, P.M., Peng, C., Kurinec, S.K., Hirschman, K.D., and Blanton, T.N., in Microcrystalline and Nanocrystalline Semiconductors, edited by Collins, R.W., Tsai, C.C., Hirose, M., Koch, F., and Brus, L. (Mater. Res. Soc. Symp. Proc. 358, Pittsburgh, 1995) p. 647.Google Scholar
30.Frohnhoff, S. and Berger, M.G., Adv. Mater. 6 (1994) p. 963.CrossRefGoogle Scholar
31.Pellegrini, V., Tredicucci, A., Mazzoleni, C., and Pavesi, L., Phys. Rev. B 52 (1995) p. R14328;CrossRefGoogle Scholar
Pavesi, L., Mazzoleni, C., Tredicucci, A., and Pellegrini, V., Appl. Phys. Lett. 67 (1995) p. 3280.CrossRefGoogle Scholar
32.Tsybeskov, L., Hirschman, K.D., Duttagupta, S.P., Fauchet, P.M., Zacharias, M., Kohlert, P., McCoffrey, J.P., and Lockwood, D.J., in Proc. Quantum Confinement: Nanoscale Materials, Devices and Systems, edited by Cahay, M., Leburton, J.P., Lockwood, D.J., and S. Bandyopadhyay, , vol. 97–11 (The Electrochemical Society, Pennington, NJ, 1997) p. 134.Google Scholar
33.Tsybeskov, L., Hirschman, K.D., Duttagupta, S.P., Zacharias, M., Fauchet, P.M., McCoffrey, J.P., and Lockwood, D.J., Appl. Phys. Lett. 72 (1) (1998) p. 43.CrossRefGoogle Scholar
34.Bergh, A.A. and Dean, P.J., Light-Emitting Diodes (Clarendon Press, Oxford, 1976) p. 591.Google Scholar
35.Brown, T.G. and Hall, D.G., in Light Emission in Silicon: From Physics to Devices, edited by Lockwood, D.J., Semiconductors and Semimetals, vol. 49 (Academic Press, San Diego, 1998) p. 78.Google Scholar
36.Canham, L.T., MRS Bulletin XVIII (7) (1993) p. 22.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 30 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 26th January 2021. This data will be updated every 24 hours.

Hostname: page-component-898fc554b-gwqw7 Total loading time: 0.303 Render date: 2021-01-26T15:53:17.530Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Nanocrystalline Silicon for Optoelectronic Applications
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Nanocrystalline Silicon for Optoelectronic Applications
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Nanocrystalline Silicon for Optoelectronic Applications
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *