Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-16T17:07:39.211Z Has data issue: false hasContentIssue false

Molecular Beam Epitaxy: Thin Film Growth and Surface Studies

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Molecular Beam Epitaxy (MBE) is a thin film deposition process in which thermal beams of atoms or molecules react on the clean surface of a single-crystalline substrate, held at high temperatures under ultrahigh vacuum conditions, to form an epitaxial film. Thus, contrary to the CVD processes described in the other articles, the MBE process is a physical method of thin film deposition.

The vacuum requirements for the MBE process are typically better than 10−10 torr. This makes it possible to grow epitaxial films with high purity and excellent crystal quality at relatively low substrate temperatures. Additionally, the ultrahigh vacuum environment allows the study of surface, interface, and bulk properties of the growing film in real time, by employing a variety of structural and analytical probes.

Although the MBE deposition process was first proposed by Günther in 1958, its implementation had to wait for the development of the ultrahigh vacuum technology. In 1968 Davey and Pankey successfully grew epitaxial GaAs films by the MBE process. At the same time Arthur's work on the kinetics of GaAs growth laid the groundwork for the growth of high quality MBE films of GaAs and other III-V compounds by Arthur and LePore and Cho.

Type
Deposition Processes
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Cho, A.Y. and Arthur, J.R., Prog. Solid State Chem. 10 (1975) p. 157.CrossRefGoogle Scholar
2.Günther, K.Z., Z. Naturforsch. 13a (1958) p. 1081.CrossRefGoogle Scholar
3.Davey, J.E. and Pankey, T., J. Appl. Phys. 39 (1968) p. 1941.CrossRefGoogle Scholar
4.Arthur, J.R., J. Appl. Phys. 39 (1968) p. 4032.CrossRefGoogle Scholar
5.Arthur, J.R. and LePore, J.J., J. Vac. Sci. Technol. 6 (1969) p. 545.CrossRefGoogle Scholar
6.Cho, A.Y., Surf. Sci. 17 (1969) p. 494.CrossRefGoogle Scholar
7.Esaki, L. and Tsu, R., IBM Research Note RC-2418 (1969).Google Scholar
8.Esaki, L. and Tsu, R., IBM Research Develop. 14 (1970) p. 61.CrossRefGoogle Scholar
9.Ploog, K., in Crystal Growth, Properties and Applications, Vol. 3, edited by Frayhard, H.C. (Springer-Verlag, Berlin, Heidelberg, 1980) p. 73.Google Scholar
10.Cho, A.Y., Thin Solid Films 100 (1983) p. 291.CrossRefGoogle Scholar
11.Gossard, A.C., in Treatise on Material Science and Technology, Preparation and Properties of Thin Films, Vol. 24, edited by Tu, K.N. and Rosenberg, R. (Academic Press, 1982) p. 13.CrossRefGoogle Scholar
12.Molecular Beam Epitaxy and Heterostructures, edited by Chang, L.L. and Ploog, K. (Martinus Nijhoff Publishers, 1985).CrossRefGoogle Scholar
13.Synthetic Modulated Structures, edited by Chang, L.L. and Giessen, B.C. (Academic Press, 1985).Google Scholar
14.The Technology and Physics of Molecular Beam Epitaxy, edited by Parker, E.H.C. (Plenum Publishing Corp., New York, 1986).Google Scholar
15.Davies, G.J. and Williams, D., in The Technology and Physics of Molecular Beam Epitaxy, Vol. 2, edited by Parker, E.H.C. (Plenum Publishing Corp., New York, 1986) p. 15.Google Scholar
16.Knudsen, M., Ann. Phys. 4 (28) (1909) p. 999.CrossRefGoogle Scholar
17.Ruth, V. and Hirth, J.P., in Condensation and Evaporation of Solids, edited by Rutner, E., Goldfinger, P., and Hirth, J.P. (Academic Press, 1964) p. 99.Google Scholar
18.Panish, M.B., J. Electrochem. Soc. 127 (1980) p. 2729.CrossRefGoogle Scholar
19.Calawa, A.R., Appl. Phys. Lett. 38 (1981) p. 701.CrossRefGoogle Scholar
20.Venhoff, E., Pletschen, W., Balk, P., and Luth, H., 1st European Workshop on Molecular Beam Epitaxy, Stuttgart (1981).Google Scholar
21.Molecular Beam Epitaxy 1986, edited by Foxon, C.T. and Harris, J.J. (North Holland, Amsterdam, 1987).Google Scholar
22.Cho, A.Y., J. Vac. Sci. Technol. 8 (1971) p. 531.CrossRefGoogle Scholar
23.Holloway, S. and Beeby, J.L., J. Phys. C11 (1978) L247.Google Scholar
24.Harris, J.J., Joyce, B.A., and Dobson, P.J., Surface Sci. 103 (1981) p. L90.CrossRefGoogle Scholar
25.Wood, C.E.C., Surface Sci. 108 (1981) p. L441.CrossRefGoogle Scholar
26.Harris, J.J., Joyce, B.A., and Dobson, P.J., Surface Sci. 108 (1981) p. L444.CrossRefGoogle Scholar
27.Neave, J.H., Joyce, B.A., Dobson, P.J., and Norton, N., Appl. Phys. A31 (1983) p. 1.CrossRefGoogle Scholar
28.VanHove, J.M., Lent, C.S., Pukite, P.R., and Cohen, P.I., J. Vac. Sci. Technol. B1 (1983) p. 741.CrossRefGoogle Scholar
29.Dobson, P.J., Joyce, B.A., Neave, J.H., and Zhang, J., in Molecular Beam Epitaxy 1986, edited by Foxon, C.T. and Harris, J.J. (North Holland, Amsterdam, 1987) p. 1.Google Scholar
30.Tsang, W.T. and Ilegems, M., Appl. Phys. Lett. 31 (1977) p. 301.CrossRefGoogle Scholar
31.Tsang, W.T. and Cho, A.Y., Appl. Phys. Lett. 32 (1978) p. 491.CrossRefGoogle Scholar
32.Tsang, W.T. and Ilegems, M., Appl. Phys. Lett. 35 (1979) p. 792.CrossRefGoogle Scholar
33.Cho, A.Y. and Dernier, P.D., J. Appl. Phys. 49 (1978) p. 3328.CrossRefGoogle Scholar
34.Dingle, R., Störnier, H.L., Gossard, A.C., and Wiegmann, W., Appl. Phys. Lett. 33 (1978) p. 665.CrossRefGoogle Scholar
35.Markoc, Hadis, in Molecular Beam Epitaxy and Heterostructures, edited by Chang, L.L. and Ploog, K. (Martinus Nijhoff Publishers, 1985) p. 625.CrossRefGoogle Scholar
36.Esaki, L., in Molecular Beam Epitaxy and Heterostructures, edited by Chang, L.L. and Ploog, K. (Martinus Nijhoff Publishers, 1985) p. 1.Google Scholar
37.Osboum, G.C., Biefeld, R.M., and Gourley, P.L., Appl. Phys. Lett. 41 (1982) p. 172.Google Scholar
38.Mathews, J.W., in Epitaxial Growth - Part B, edited by Mathews, J.W. (Academic Press, 1975) p. 560.Google Scholar
39.Bean, J.C., in Molecular Beam Epitaxy 1986, edited by Foxon, C.T. and Harris, J.J. (North Holland, Amsterdam, 1987) p. 411.Google Scholar
40.Faurie, J.P., in Molecular Beam Epitaxy 1986, edited by Foxon, C.T. and Harris, J.J. (North Holland, Amsterdam, 1987) p. 483.Google Scholar
41.Prinz, G.A., in Layered Structures and Epitaxy, edited by Gibson, J.M., Osboum, G.C., and Tromp, R.M. (Mater. Res. Soc. Symp. Proc. 56, Pittsburgh, PA, 1986) p. 139.Google Scholar
42.Phillips, J.M., Feldman, L.C., Gibson, J.M., and McDonald, M.L., Thin Solid Films 104 (1983) p. 101.CrossRefGoogle Scholar
43.Merlin, R., Bajema, K., Clarke, R., Juang, F.Y., and Bhattacharya, P.K., Phys. Rev. Lett. 55 (1985) p. 1768.CrossRefGoogle Scholar
44.Clarke, R., Moustakas, T., Rajema, K., Grier, D., Passos, W. Dos, and Merlin, R., Super-lattices and Microstructures 4 (1988) p. 371.CrossRefGoogle Scholar
45.Chomette, A., Deveaud, B., Regreny, A., and Bastard, G., Phys. Rev. Lett. 57 (1986) p. 1464.CrossRefGoogle Scholar
46.Treacy, M. and Moustakas, T.D. (to be published).Google Scholar
47.Deckman, H.W. and Moustakas, T.D., J. Vac. Sci. Technol. B6 (1988) p. 316.CrossRefGoogle Scholar
48.Deckman, H.W., Abeles, B., Dunsmuir, J.H., Roxlo, C.B., and Moustakas, T.D., MRS Bulletin 13 (1) (1987) p. 24.CrossRefGoogle Scholar
49.Shuller, I.K., MRS Bulletin, this issue.Google Scholar